On \(Q \)-Fuzzy Bi-\(\Gamma \)-Ideals in \(\Gamma \)-Semigroups

S. Lekkoksung

Rajamangala University of Technology Isan
Khon Kaen Campus, Thailand
Lekkoksung_somsak@hotmail.com

Abstract
In this paper, we consider the \(Q \)-fuzzification of bi-\(\Gamma \)-ideals in \(\Gamma \)-semigroups, and investigate some of their related properties.

Mathematics Subject Classification: 08A72, 20M12, 20M99, 20N25

Keywords: \(Q \)-fuzzy set, \(\Gamma \)-semigroup, \(Q \)-Fuzzy bi-\(\Gamma \)-ideals

1 Introduction
The concept of fuzzy sets was introduced by Lofti Zadeh[13] in his classic paper in 1965. Azirel Rosenfeld[8] used the idea of fuzzy set to introduce the notions of fuzzy subgroups. The idea of fuzzy subsemigroup was also introduced by Kuroki [3, 5, 6]. In [4], Kuroki characterized several classes of semigroups in terms of fuzzy left, fuzzy right and fuzzy bi-ideals. The notion of a \(\Gamma \)-semigroup was introduced by Sen and Saha[12] as a generalization of semigroups and ternary semigroup. S.K. Sardar and S.K. Majumder [1, 2, 10, 11] have introduced the notion of fuzzification of ideals, prime ideals, semiprime ideals and ideal extensions of \(\Gamma \)-semigroups and studied them via its operator semigroups. In this paper, we consider a \(Q \)-fuzzification of the concept of a bi-\(\Gamma \)-ideal in a \(\Gamma \)-semigroup, and some properties of such bi-\(\Gamma \)-ideals are investigated.

2 Preliminary Notes
In this section we discuss some elementary definitions that we use in the sequel.

Definition 2.1 Let \(S \) and \(\Gamma \) be two non-empty sets. \(S \) is called a \(\Gamma \)-semigroup if there exist mapping from \(S \times \Gamma \times S \) to \(S \), written as \((a, \alpha, b) \rightarrow a\alpha b \) satisfying the following associative law: \((a\alpha b)\beta c = a\alpha (b\beta c) \) for all \(a, b, c \in S \) and for all \(\alpha, \beta \in \Gamma \).
Let S be a Γ-semigroup. A non-empty subset A of S is said to be a sub Γ-semigroup of S if $ASA \subseteq A$.

Definition 2.2 Let S be a Γ-semigroup. By a left(right) ideal of S we mean a non-empty set A of S such that $SA \subseteq A (AS \subseteq A)$. By two side ideal or simply an ideal, we mean a non-empty subset of S which is both a left and right ideal of S.

Definition 2.3 Let S be a Γ-semigroup. A sub Γ-semigroup A of S is called a bi-Γ-ideal of S if $A \Gamma A \subseteq A$.

Let Q and X be two non-empty sets. A mapping $\mu : X \times Q \to [0, 1]$ is called the Q-fuzzy subset of X and the complement of a set μ, denoted by μ' is the Q-fuzzy subset in X given by $\mu'(x, q) = 1 - \mu(x, q)$ for all $x \in X$ and for all $q \in Q$.

Let μ be a Q-fuzzy subset of a non-empty set X. Then the set $\mu_t = \{x \in X \mid \mu(x, q) \geq t, \forall q \in Q\}$ for $t \in [0, 1]$, is called the level subset or t-level subset of μ.

Let A be a non-empty subset of X. Then $\mu_A : X \times Q \to [0, 1]$ is called a characteristic function which is defined by

$$
\mu_A(x, q) = \begin{cases}
1 & \text{if } x \in A \\
0 & \text{if } x \notin A,
\end{cases}
$$

for all $x \in S$ and for all $q \in Q$.

Definition 2.4 Let μ be a Q-fuzzy subset of a Γ-semigroup S. A Q-fuzzy subset μ is called a Q-fuzzy sub Γ-semigroup of S if $\mu(x\gamma y, q) \geq \min\{\mu(x, q), \mu(y, q)\}$ for all $x, y \in S, \gamma \in \Gamma$ and $q \in Q$.

3 Main Results

In what follow, S will denote a Γ-semigroup unless otherwise specified. Now, we introduce a notion of Q-fuzzy bi-Γ-ideal of S.

Definition 3.1 A Q-fuzzy subset μ of S is called a Q-fuzzy bi-Γ-ideal of S if

(i) $(\forall x, y \in S, \gamma \in \Gamma, q \in Q)(\mu(x\gamma y, q) \geq \min\{\mu(x, q), \mu(y, q)\})$,

(ii) $(\forall x, y, z \in S, \alpha, \beta \in \Gamma, q \in Q)(\mu(x\alpha y\beta z, q) \geq \min\{\mu(x, q), \mu(z, q)\})$.

Lemma 3.2 If B is a bi-Γ-ideal of S then for any $0 < t < 1$, there exists a Q-fuzzy bi-Γ-ideal μ of S such that $\mu_t = B$
Proof. Let $\mu : S \times Q \to [0, 1]$ be defined by

$$
\mu(x, q) = \begin{cases}
 t & \text{if } x \in B \\
 0 & \text{if } x \notin B
\end{cases}
$$

for all $x \in S$ and for all $q \in Q$, where t is a fixed number in $(0, 1)$. Then, clearly $\mu_t = B$.

Now suppose that B is a bi-Γ-ideal of S. For all $x, y, z \in S, q \in Q$ and $\gamma \in \Gamma$ such that $x \gamma y \in B$, we have

$$
\mu(x \gamma y, q) \geq t = \min\{\mu(x, q), \mu(y, q)\}.
$$

Also, for all $x, y, z \in S, q \in Q$ and $\alpha, \beta \in \Gamma$ such that $x \alpha y \beta z \in B$, we have

$$
\mu(x \alpha y \beta z, q) \geq t = \min\{\mu(x, q), \mu(y, q)\}.
$$

Thus μ is a Q-fuzzy bi-Γ-ideal of S.

Lemma 3.3 Let B be a non-empty subset of S. Then B is a bi-Γ-ideal of S if and only if χ_B is a Q-fuzzy bi-Γ-ideal of S.

Proof. Let $x, y \in S, q \in Q$ and $\gamma \in \Gamma$. From the hypothesis, $x \gamma y \in B$.

(i) If $x, y \in B$, then $\chi_B(x, q) = 1$ and $\chi_B(y, q) = 1$. In this case $\chi_B(x \gamma y, q) = 1 \geq \min\{\chi_B(x, q), \chi_B(y, q)\}$.

(ii) If $x \in B$ and $y \notin B$, then $\chi_B(x, q) = 1$ and $\chi(y, q) = 0$. Thus, $\chi_B(x \gamma y, q) = 1 \geq \min\{\chi_B(x, q), \chi_B(y, q)\}$.

(iii) If $x \notin B$ and $y \in B$, then, similarly with case (ii).

(iv) If $x \notin B$ and $y \notin B$, then $\chi_B(x, q) = 0$ and $\chi(y, q) = 0$. Thus, $\chi_B(x \gamma y, q) = 1 \geq \min\{\chi_B(x, q), \chi_B(y, q)\}$.

Let $x, y, z \in S, q \in Q$ and $\alpha, \beta \in \Gamma$. From the hypothesis, $x \alpha y \beta z \in B$.

(i) If $x, z \in B$, then $\chi_B(x, q) = 1$ and $\chi_B(z, q) = 1$. Thus $\chi_B(x \alpha y \beta z, q) = 1 \geq \min\{\chi_B(x, q), \chi_B(z, q)\}$.

(ii) If $x \in B$ and $z \notin B$, then $\chi_B(x, q) = 1$ and $\chi_B(z, q) = 0$. Thus $\chi_B(x \alpha y \beta z, q) = 1 \geq \min\{\chi_B(x, q), \chi_B(z, q)\}$.

(ii) If $x \notin B$ and $z \in B$, then $\chi_B(x, q) = 0$ and $\chi_B(z, q) = 1$. Thus $\chi_B(x \alpha y \beta z, q) = 1 \geq \min\{\chi_B(x, q), \chi_B(z, q)\}$.

(ii) If $x \notin B$ and $z \notin B$, then $\chi_B(x, q) = 0$ and $\chi_B(z, q) = 0$. Thus $\chi_B(x \alpha y \beta z, q) = 1 \geq \min\{\chi_B(x, q), \chi_B(z, q)\}$.

Conversely, suppose χ_B is a Q-fuzzy bi-Γ-ideal of S. Then by Lemma 3.2, χ_B is two-value. Hence B is a bi-Γ-ideal of S. This completes the proof.
The following theorem proves that an intersection of Q-fuzzy bi-Γ-ideals is also a Q-fuzzy bi-Q-ideal.

Theorem 3.4 If $\{A_i\}_{i \in \lambda}$ is a family of Q-fuzzy bi-Γ-ideals of S then $\cap A_i$ is a Q-fuzzy bi-Γ-ideal of S, where $\cap A_i = \{\cap \mu_i\}$ and $\cap \mu_i(x, q) = \min\{\mu_i(x, q) \mid i \in \lambda\}$ for every $x \in S$ and $q \in Q$.

Proof. Let $x, y \in S, q \in Q$. Then we have

(i) $\cap \mu_i(x\gamma y, q) = \inf\{\min\{\mu_i(x, q), \mu_i(y, q)\} \mid i \in \lambda\}$

= $\min\{\{\inf(\mu_i(x, q)), \inf(\mu_i(y, q))\} \mid i \in \lambda\}$

= $\min\{\{\inf(\mu_i(x, q)) \mid i \in \lambda\}, \{\inf(\mu_i(y, q)) \mid i \in \lambda\}\}$

= $\min\{\inf(\mu_i(x, q), \inf(\mu_i(y, q))\}$.

Let $x, y, z \in S, q \in Q$ and $\alpha, \beta \in \Gamma$.

(ii) $\cap \mu_i(x\alpha y\beta z, q) = \inf\{\min\{\mu_i(x, q), \mu_i(z, q)\} \mid i \in \lambda\}$

= $\min\{\{\inf(\mu_i(x, q)), \inf(\mu_i(z, q))\} \mid i \in \lambda\}$

= $\min\{\{\inf(\mu_i(x, q)) \mid i \in \lambda\}, \{\inf(\mu_i(z, q)) \mid i \in \lambda\}\}$

= $\min\{\inf(\mu_i(x, q), \inf(\mu_i(z, q))\}$.

Hence, $\cap A_i$ is a Q-fuzzy bi-Γ-ideal of S. \blacksquare

Theorem 3.5 If μ is a Q-fuzzy bi-Γ-ideal of S then μ' is also a Q-fuzzy bi-Γ-ideal of M.

Proof. (i) Let $x, y \in S, q \in Q$ and $\gamma \in \Gamma$. We have:

$\mu'(x\gamma y, q) = 1 - \mu(x\gamma y, q)$

= $1 - \min\{\mu(x, q), \mu(y, q)\}$

= $\min\{1 - \mu(x, q), 1 - \mu(y, q)\}$

= $\min\{\mu'(x, q), \mu'(y, q)\}$.

Let $x, y, z \in S, q \in Q$ and $\alpha, \beta \in \Gamma$. We have:

$\mu'(x\alpha y\beta z, q) = 1 - \mu(x\alpha y\beta z, q)$

= $1 - \min\{\mu(x, q), \mu(z, q)\}$

= $\min\{1 - \mu(x, q), 1 - \mu(z, q)\}$

= $\min\{\mu'(x, q), \mu'(z, q)\}$.

Therefore, μ' is also a Q-fuzzy bi-Γ-ideal of S. \blacksquare

The following theorem gives the relation between Q-fuzzy bi-Γ-ideal and bi-Γ-ideal.

Theorem 3.6 A Q-fuzzy subset μ in a Γ-ideal of S is a Q-fuzzy bi-Γ-ideal of S if and only if the level set $U(\mu; t) = \{x \in S \mid \mu(x, q) \geq t, \forall q \in Q\}$ is a bi-Γ-ideal of S when it is non-empty.

Proof. Let μ be a Q-fuzzy bi-Γ-ideal of S and $x, y \in S, q \in Q$. Then $\mu(x\gamma y, q) \geq \min\{\mu(x, q), \mu(y, q)\}$.

On Q-fuzzy bi-Γ-ideals in Γ-semigroups

\[x, y \in U(\mu;t), q \in Q, \gamma \in \Gamma \Rightarrow \mu(x,q) \geq t, \mu(y,q) \geq t \]
\[\mu(x\gamma y,q) \geq \min\{\mu(x,q), \mu(y,q)\} \]
\[\mu(x\gamma y,q) \geq t \]
\[\Rightarrow x\gamma y \in U(\mu;t). \]

Also, let \(x, y, z \in S, q \in Q \) and \(\alpha, \beta \in \Gamma \). Then
\[\mu(x\alpha y\beta z) \geq \min\{\mu(x,q), \mu(z,q)\}. \]

Thus, \(U(\mu;t) \) is a bi-Γ-ideal of \(S \).

Conversely, assume that \(U(\mu;t) \) is a bi-Γ-ideal of \(S \).

Let \(t = \min\{\mu(x,q), \mu(y,q)\} \). Then
\[x, y \in U(\mu;t), q \in Q, \gamma \in \Gamma \Rightarrow x\gamma y \in U(\mu;t) \]
\[\Rightarrow \mu(x\gamma y,q) \geq t \]
\[\Rightarrow \mu(x\gamma y,q) \geq \min\{\mu(x,q), \mu(y,q)\}. \]

Next, define \(t = \min\{\mu(x,q), \mu(z,q)\} \). Then
\[x, y, z \in U(\mu;t), q \in Q, \alpha, \beta \in \Gamma \Rightarrow x\alpha y\beta z \in U(\mu;t) \]
\[\Rightarrow \mu(x\alpha y\beta z,q) \geq t \]
\[\Rightarrow \mu(x\alpha y\beta z,q) \geq \min\{\mu(x,q), \mu(z,q)\}. \]

Hence \(\mu \) is a Q-fuzzy bi-Γ-ideal of \(S \).

References

Received: August, 2011