The Relation of Boundary and Exterior Sets in Biminimal Structure Spaces

Supunnee Sompong

Department of Mathematics and Statistics
Faculty of Science and Technology
Sakon Nakhon Rajabhat University
Sakon Nakhon 47000, Thailand
s_sanpinij@yahoo.com

Sa-at Muangchan

Department of Mathematics and Statistics
Faculty of Science and Technology
Sakon Nakhon Rajabhat University
Sakon Nakhon 47000, Thailand
msaat@hotmail.com

Abstract

The purpose of this paper is to introduce the concept and some relation of boundary and exterior sets in biminimal structure spaces.

Keywords: biminimal structure spaces, boundary and exterior sets

1 Introduction

The notion of biminimal structure space was introduced by C. Boonpok [1] in 2010. Also he studied \(m_X^1m_X^2 \)-closed sets and \(m_X^1m_X^2 \)-open sets in biminimal structure spaces. The concept of boundary set in biminimal structure space was introduced by S. Sompong and S. Muangchan [5]. And the notion of exterior set in biminimal structure space was introduced by S. Sompong [4]. In this paper, we introduced the concept and some relation of boundary and exterior sets in biminimal structure spaces.

2 Preliminaries

In this section we recall the notions, notations and some previously results.
Definition 2.1. [2] Let X be a nonempty set and $P(X)$ be the power set of X. A subfamily m_X of $P(X)$ is called a minimal structure (briefly m-structure) on X if $\emptyset \in m_X$ and $X \in m_X$.

By (X, m_X), we denote a nonempty set X with an m-structure m_X on X and it is called an m-space.

Definition 2.2. [1] Let X be a nonempty set and m^1_X, m^2_X be minimal structures on X. A triple (X, m^1_X, m^2_X) is called a biminimal structure space (briefly bim-space).

We defined all of elements in m^1_X and m^2_X are open sets.

Definition 2.3. [1] A subset of a biminimal structure space (X, m^1_X, m^2_X) is called $m^1_Xm^2_X$-closed if $A = m^1\text{Cl}(m^2\text{Cl}(A))$. The complement of $m^1_Xm^2_X$-closed set is called $m^1_Xm^2_X$-open.

Proposition 2.4. [1] Let (X, m^1_X, m^2_X) be a biminimal structure space. Then A is $m^1_Xm^2_X$-open subset of (X, m^1_X, m^2_X) if and only if $A = m^1\text{Int}(m^2\text{Int}(A))$.

Proposition 2.5. [1] Let (X, m^1_X, m^2_X) be a biminimal structure space. If A and B are $m^1_Xm^2_X$-closed subsets of (X, m^1_X, m^2_X), then $A \cap B$ is $m^1_Xm^2_X$-closed.

Proposition 2.6. [1] Let (X, m^1_X, m^2_X) be a biminimal structure space. If A and B are $m^1_Xm^2_X$-open subsets of (X, m^1_X, m^2_X), then $A \cup B$ is $m^1_Xm^2_X$-open.

Definition 2.7. [5] Let (X, m^1_X, m^2_X) be a biminimal structure space, A be a subset of X and $x \in X$. We called x is $(i,j) - m_X$ – boundary point of A if $x \in m^i\text{Cl}(m^j\text{Cl}(A)) \cap m^i\text{Cl}(m^j\text{Cl}(X \setminus A))$. We denote the set of all $(i,j) - m_X$ – boundary point of A by $mBdr_{ij}(A)$ where $i, j = 1, 2$ and $i \neq j$.

From definition, we have $mBdr_{ij}(A) = m^i\text{Cl}(m^j\text{Cl}(A)) \cap m^i\text{Cl}(m^j\text{Cl}(X \setminus A))$.

Definition 2.8. [4] Let (X, m^1_X, m^2_X) be a biminimal structure space, A be a subset of X and $x \in X$. We called x is $m^1_Xm^2_X$-exterior point of A if $x \in m^i\text{Int}(m^j\text{Int}(X \setminus A))$. We denote the set of all $m^1_Xm^2_X$-exterior point of A by $mExt_{ij}(A)$ where $i, j = 1, 2$ and $i \neq j$.

From above definition, it is easy to see that $mExt_{ij}(A) = X \setminus m^i\text{Cl}(m^j\text{Cl}(A))$.

3 The Relation of Boundary and Exterior Sets

In this section, we introduced the concept and some relation of boundary and exterior sets in biminimal structure spaces.
Theorem 3.1. Let \((X, m_X^1, m_X^2)\) be a biminimal structure space and \(A\) be a subset of \(X\). Then for any \(i, j = 1, 2\) and \(i \neq j\), we have
\[m_{Ext_{ij}}(A) \cap m_{Bdr_{ij}}(A) = \emptyset.\]

Proof. \[m_{Ext_{ij}}(A) \cap m_{Bdr_{ij}}(A) = (X \setminus m^1 Cl(m^j Cl(A))) \cap [m^i Cl(m^j Cl(A)) \cap m^j Cl(m^i Cl(X \setminus A))] = \emptyset.\]

Corollary 3.2. Let \((X, m_X^1, m_X^2)\) be a biminimal structure space and \(A\) be a subset of \(X\). Then for any \(i, j = 1, 2\) and \(i \neq j\), we have
\[m_{Ext_{ij}}(A) \cap m_{Bdr_{ij}}(X \setminus A) = \emptyset.\]

Proof. By Lemma 3.3 \([5]\), \(m_{Bdr_{ij}}(X \setminus A) = m_{Bdr_{ij}}(A)\) and Theorem 3.1, we have \(m_{Ext_{ij}}(A) \cap m_{Bdr_{ij}}(X \setminus A) = \emptyset\) for any \(i, j = 1, 2\) and \(i \neq j\).

Example 3.3. Let \(X = \{1, 2, 3\}\). Define \(m\)-structures \(m_X^1\) and \(m_X^2\) on \(X\) as follows: \(m_X^1 = \{\emptyset, \{1\}, \{2, 3\}, X\}\) and \(m_X^2 = \{\emptyset, \{2\}, \{1, 3\}, X\}\).

Hence \(m_{Ext_{12}}(\{2\}) = X \setminus m^1 Cl(m^2 Cl(\{2\})) = \{1\}\),
\[m_{Ext_{21}}(\{2\}) = X \setminus m^2 Cl(m^1 Cl(\{2\})) = \emptyset,\]
\[m_{Bdr_{ij}}(\{2\}) = m^i Cl(m^j Cl(\{2\})) \cap m^j Cl(m^i Cl(X \setminus \{2\})) = \emptyset,\]
and \(m_{Bdr_{21}}(\{2\}) = X\).

Therefore \(m_{Ext_{ij}}(\{2\}) \cap m_{Bdr_{ij}}(\{2\}) = \emptyset\) for any \(i, j = 1, 2\) and \(i \neq j\).

Theorem 3.4. Let \((X, m_X^1, m_X^2)\) be a biminimal structure space and \(A\) be a subset of \(X\). Then we have \(m_{Ext_{ij}} \cap m^j Int(m^i Int(A)) = \emptyset\) for any \(i, j = 1, 2\) and \(i \neq j\).

Proof. \[m_{Ext_{ij}} \cap m^j Int(m^i Int(A)) = (X \setminus m^i Cl(m^j Cl(A))) \cap m^j Int(m^i Int(A)) = m^i Int(m^j Int(X \setminus A)) \cap m^i Int(m^j Int(A)) = \emptyset.\]

Example 3.5. Let \(X = \{1, 2, 3\}\). Define \(m\)-structures \(m_X^1\) and \(m_X^2\) on \(X\) as follows: \(m_X^1 = \{\emptyset, \{1\}, \{2, 3\}, X\}\) and \(m_X^2 = \{\emptyset, \{2\}, \{1, 3\}, X\}\).

Hence \(m_{Ext_{12}}(\{2\}) = X \setminus m^1 Cl(m^2 Cl(\{2\})) = \{1\}\),
\[m_{Ext_{21}}(\{2\}) = X \setminus m^2 Cl(m^1 Cl(\{2\})) = \emptyset,\]
\[m^1 Int(m^2 Int(\{2\})) = \emptyset\] and \(m^2 Int(m^1 Int(\{2\})) = \emptyset\).

Therefore \(m_{Ext_{ij}}(\{2\}) \cap m^j Int(m^i Int(\{2\})) = \emptyset\) for any \(i, j = 1, 2\) and \(i \neq j\).

Theorem 3.6. \([5]\) Let \((X, m_X^1, m_X^2)\) be a biminimal structure space and \(A\) be a subset of \(X\). Then for any \(i, j = 1, 2\) and \(i \neq j\),
\[m_{Bdr_{ij}}(A) \cap m^j Int(m^i Int(A)) = \emptyset.\]
Example 3.7. Let $X = \{1, 2, 3\}$. Define m-structures m_X^1 and m_X^2 on X as follows: $m_X^1 = \{\emptyset, \{1\}, \{2, 3\}, X\}$ and $m_X^2 = \{\emptyset, \{2\}, \{1, 3\}, X\}$.

Hence $m_{Bdr_{ij}}(\{2\}) = m^i\text{Cl}(m^j\text{Cl}(\{2\})) \cap m^j\text{Cl}(m^i\text{Cl}(X \setminus \{2\}))$.

$m_{Bdr_{12}}(\{2\}) = \{2, 3\}, m_{Bdr_{21}}(\{2\}) = X$.

$m^1\text{Int}(m^2\text{Int}(\{2\})) = \emptyset$ and $m^2\text{Int}(m^1\text{Int}(\{2\})) = \emptyset$.

Therefore $m_{Bdr_{ij}}(\{2\}) \cap m^i\text{Int}(m^j\text{Int}(\{2\})) = \emptyset$ for any $i, j = 1, 2$ and $i \neq j$.

Theorem 3.8. Let (X, m_X^1, m_X^2) be a biminimal structure space and A be a subset of X. Then $X = m_{Bdr_{ij}}(A) \cup m_{Ext_{ij}}(A) \cup m^i\text{Int}(m^j\text{Int}(A))$ is a pairwise disjoint union for any $i, j = 1, 2$ and $i \neq j$.

Proof. $m_{Bdr_{ij}}(A) \cup m_{Ext_{ij}}(A) \cup m^i\text{Int}(m^j\text{Int}(A))$

$= [m^i\text{Cl}(m^j\text{Cl}(A)) \setminus m^j\text{Int}(m^i\text{Int}(A))] \cup [X \setminus m^i\text{Cl}(m^j\text{Cl}(A))]

\cup m^j\text{Int}(m^i\text{Int}(A))$

$= [m^i\text{Cl}(m^j\text{Cl}(A)) \setminus m^j\text{Int}(m^i\text{Int}(A))] \cup m^j\text{Int}(m^i\text{Int}(A))

\cup [X \setminus m^i\text{Cl}(m^j\text{Cl}(A))$

$= m^i\text{Cl}(m^j\text{Cl}(A)) \cup [X \setminus m^i\text{Cl}(m^j\text{Cl}(A))]

= X$.

By Theorem 3.1, 3.4 and 3.6, we have $m_{Ext_{ij}}(A) \cap m_{Bdr_{ij}}(A) = \emptyset$, $m_{Ext_{ij}} \cap m^i\text{Int}(m^j\text{Int}(A)) = \emptyset$ and $m_{Bdr_{ij}}(A) \cap m^i\text{Int}(m^j\text{Int}(A)) = \emptyset$.

Therefore $X = m_{Bdr_{ij}}(A) \cup m_{Ext_{ij}}(A) \cup m^i\text{Int}(m^j\text{Int}(A))$ is a pairwise disjoint union for any $i, j = 1, 2$ and $i \neq j$.

Example 3.9. Let $X = \{1, 2, 3\}$. Define m-structures m_X^1 and m_X^2 on X as follows: $m_X^1 = \{\emptyset, \{1\}, \{2, 3\}, X\}$ and $m_X^2 = \{\emptyset, \{2\}, \{1, 3\}, X\}$.

Hence $m_{Bdr_{12}}(\{2\}) = \{2, 3\}, m_{Bdr_{21}}(\{2\}) = X$.

$m_{Ext_{12}}(\{2\}) = \{1\}, m_{Ext_{21}}(\{2\}) = \emptyset$.

$m^1\text{Int}(m^2\text{Int}(\{2\})) = \emptyset$ and $m^2\text{Int}(m^1\text{Int}(\{2\})) = \emptyset$.

Therefore $X = m_{Bdr_{ij}}(A) \cup m_{Ext_{ij}}(A) \cup m^i\text{Int}(m^j\text{Int}(A))$ for any $i, j = 1, 2$ and $i \neq j$.

Theorem 3.10. Let (X, m_X^1, m_X^2) be a biminimal structure space and A be a subset of X. If A is $m_X^1 m_X^2$-closed, then for any $i, j = 1, 2$ and $i \neq j$, we have $m_{Ext}(X \setminus m_{Ext}(A)) \cap m_{Bdr}(A) = \emptyset$.

Proof. Since A is $m_X^1 m_X^2$-closed, $m_{Ext}(X \setminus m_{Ext}(A)) = m_{Ext}(A)$, (by Theorem 3.7 [4]). It follows that

$m_{Ext}(X \setminus m_{Ext}(A)) \cap m_{Bdr}(A) = m_{Ext}(A) \cap m_{Bdr}(A) = \emptyset$.

Theorem 3.11. Let (X, m_X^1, m_X^2) be a biminimal structure space and A, B be a subset of X. If $A \subseteq B$, then $m_{Ext}(B) \subseteq X \setminus m_{Bdr}(A)$, where $i, j = 1, 2$ and $i \neq j$.
Proof. Since $A \subseteq B$ and Theorem 3.4 [4], \(m_{\text{Ext}}_{ij}(B) \subseteq m_{\text{Ext}}_{ij}(A) \).

From \(m_{\text{Ext}}_{ij}(A) \cap m_{\text{Bdr}}_{ij}(A) = \emptyset \), we have \(m_{\text{Ext}}_{ij}(A) \subseteq X \setminus m_{\text{Bdr}}_{ij}(A) \).

Hence \(m_{\text{Ext}}_{ij}(B) \subseteq X \setminus m_{\text{Bdr}}_{ij}(A) \), where \(i, j = 1, 2 \) and \(i \neq j \).

\(\square \)

From Theorem 3.11, if \(A \subseteq B \), we have \(m_{\text{Ext}}_{ij}(B) \subseteq X \setminus m_{\text{Bdr}}_{ij}(A) \), where \(i, j = 1, 2 \) and \(i \neq j \). But the following example show that \(m_{\text{Bdr}}_{ij}(B) \) need not to be a subset of \(X \setminus m_{\text{Ext}}_{ij}(A) \), where \(i, j = 1, 2 \) and \(i \neq j \).

Example 3.12. Let \(X = \{1, 2, 3\} \). Define \(m \)-structures \(m_X^1 \) and \(m_X^2 \) on \(X \) as follows:

\[
m_X^1 = \{\emptyset, \{1\}, \{2, 3\}, X\}
\]

\[
m_X^2 = \{\emptyset, \{2\}, \{1, 3\}, X\}
\]

Then \(m_{\text{Ext}}_{12}(\{2, 3\}) = \emptyset, m_{\text{Bdr}}_{12}(\{2\}) = \{2, 3\}, m_{\text{Bdr}}_{12}(\{3\}) = X \). It follows that \(X \setminus m_{\text{Bdr}}_{12}(\{2\}) = \{1\} \) and \(X \setminus m_{\text{Bdr}}_{12}(\{3\}) = \emptyset \).

Hence we have \(m_{\text{Ext}}_{12}(\{2, 3\}) \subseteq X \setminus m_{\text{Bdr}}_{12}(\{2\}) \) and \(m_{\text{Ext}}_{12}(\{2, 3\}) \subseteq X \setminus m_{\text{Bdr}}_{12}(\{3\}) \).

Since \(m_{\text{Ext}}_{12}(\{2\}) = \{1\}, m_{\text{Ext}}_{12}(\{3\}) = \emptyset, m_{\text{Bdr}}_{12}(\{2, 3\}) = X, X \setminus m_{\text{Ext}}_{12}(\{2\}) = \{2, 3\} \) and \(X \setminus m_{\text{Ext}}_{12}(\{3\}) = X \).

Thus we have \(m_{\text{Bdr}}_{12}(\{2, 3\}) \subseteq X \setminus m_{\text{Ext}}_{12}(\{2\}) \),

but \(m_{\text{Bdr}}_{12}(\{2, 3\}) \nsubseteq X \setminus m_{\text{Ext}}_{12}(\{3\}) \).

References

Received: August, 2011