Average of Some Multiplicative Functions

on the Set of Integers without Large Prime Factor

Mohamed Saber DAOUD

Département de Mathématiques, Faculté des Sciences de Tunis
Université de Tunis EL MANAR
Campus Universitaire, 2092 Tunis, Tunisie
med.saber.daoud@gmail.com

Afef HIDRI

Département de Mathématiques, Faculté des Sciences de Tunis
Université de Tunis EL MANAR
Campus Universitaire, 2092 Tunis, Tunisie
afefhidri@yahoo.fr

Abstract

Let $\lambda > 0$, $\delta \in]0, 1[$ and $f(n)$ be a multiplicative function satisfying essentially
for a large x; $\sum_{f(p) \leq x} \log f(p) = \lambda x + O(x(\log x)^{-\delta})$. In the present work, we estab-
lish an asymptotic formula for the two sums $\sum_{f(n) \leq x; P(n) \leq y} \frac{1}{f(n)}$ and $\sum_{f(n) \leq x; P(n) \leq y} 1$
, valid in the domain $1 \leq cx \leq C_0(\log f(y))^{-\delta}$, for a suitable constants c and C_0.

Mathematics Subject Classification: 11N37 (11N25)

Keywords: asymptotic formula; multiplicative function; difference-differential equation
1 Introduction

Let $P(n)$ denote the largest prime divisor of a positive integer n, with $P(1) = 1$. Also, throughout the paper, the letters p, p_1 and p_2 denote a prime number.

For $x \geq 1$ and $y > 1$, we introduce the quantity:

$$F_f(x, y) = \sum_{f(n) \leq x, P(n) \leq y} \frac{1}{f(n)}, \quad S_f(x, y) = \sum_{f(n) \leq x, P(n) \leq y} 1, \quad \psi_f(x, y) = \sum_{n \leq x, P(n) \leq y} f(n).$$

Obviously, $S_f(x, y)$, $F_f(x, y)$, and $\psi_f(x, y)$ are a natural generalization of the well-known function, usually denoted by $\psi(x, y)$, which is the number of integers $\leq x$ and free of prime factors $> y$. The later has been the object of a number of articles in the last three decades (see for example: [2], [1], [5], [10], [4] et [7]).

In [6], Naimi gives an asymptotic formula for $S_f(x, y)$, for a multiplicative function such that $f(p) = \frac{p}{\lambda}$, $(\lambda > 1)$:

$$S_f(x, y) = F.x. (\log(\frac{y}{\lambda}))^{\lambda - 1} \rho_\lambda(v) \{1 + O_\varepsilon(\frac{\log_2 x + \log(v + 1)}{\log(\frac{y}{\lambda})})\}$$

uniformly in the domain $H_{\varepsilon, \lambda, c}(x_0)$, defined by

$$x \geq x_0, \quad \exp(\log_2 cx)^{5/3 + \varepsilon} \leq \frac{y}{\lambda} \leq cx$$

with $\varepsilon > 0$, $c = \frac{1}{\inf\{f(n); n \geq 1\}}$, $v = \frac{\log cx}{\log y/\lambda}$ and φ_λ to be the continuous solution of the differential difference equation:

$$u\varphi'_\lambda(u) = (\lambda - 1)\varphi_\lambda(u) - \lambda\varphi_\lambda(u - 1), \quad u > 1, \quad \lambda > 0,$$

with initial conditions

$$\varphi_\lambda(u) = \begin{cases}
0 & \text{si } u \leq 0 \\
\frac{u^{\lambda - 1}}{\Gamma(\lambda)} & \text{si } 0 < u \leq 1
\end{cases}$$

The function φ_λ, generalizes Dickman's function φ. Many paper have been written on proprieties of this function (see for example [8] et [3]).
In his paper [9], J.M. Song established an asymptotic formula for \(\psi_f(x, y) \) where \(f \) is non-negative multiplicative arithmetic function satisfying:

There exists \(\delta \in]0, 1[\), \(\lambda > 0 \) and \(b > 0 \) such as

\[
\sum_{p \leq z} \frac{f(p)}{p} \log p = \lambda \log z + O((\log z)^{1-\delta}), \quad z \geq 2
\]

and

\[
\sum_{k \geq 2} \frac{f(p^k)}{p^k} \log p^k \leq b.
\]

The aim of this paper is to give estimates of the two sums \(F_f(x, y) \) and \(S_f(x, y) \) for a class of arithmetic function where the principals conditions are inspired from [9].

Let \(\xi_{\lambda, \delta} \) denote the class of non-negative multiplicative function \(f \) satisfying the following conditions:

\[
\begin{align*}
(\Omega_1) & \quad \sum_{f(p) \leq z} \log f(p) = \lambda z + O(z(\log z)^{-\delta}); \quad \lambda \geq 1, \quad \delta \in]0, 1[\\
(\Omega_2) & \quad \sum_{f(p^k) \leq z} \frac{\log f(p^k)}{f(p^k)} \ll (\log z)^{-\delta} \\
(\Omega_3) & \quad p_1 < p_2 \Rightarrow p_1 \ll f(p_1) < f(p_2)
\end{align*}
\]

Hypothesis \((\Omega_1) \) is often replaced by the weaker hypothesis

\[
(\Omega_1^*) \quad \sum_{f(p) \leq z} \frac{\log(f(p))}{f(p)} = \lambda \log z + O((\log z)^{1-\delta}),
\]

obtained from \((\Omega_1) \) using Abel summation.

Before starting our results, we introduce some notations.

For \(f \in \xi_{\lambda, \delta} \), we note \(v = \frac{\log cx}{\log f(y)} \) (in this article, we confuse \(y \) and the largest prime number less than \(y \)), \(c = \frac{1}{\inf \{f(n), n \geq 1\}} \) (\(c \geq 1 \)) and throughout the paper, \(O \) and \(\ll \) depends at most than \(\lambda \).

Let \(j_\lambda \) the continuous solution of the difference-differential equation

\[
u j_\lambda'(u) = kj_\lambda(u) - \lambda j_\lambda(u - 1), \quad u > 1, \quad \lambda > 0,
\]
with initial conditions:

\[j_\lambda(u) = \begin{cases} 0 & \text{si } u \leq 0 \\ \frac{u^\lambda}{\Gamma(\lambda+1)} & \text{si } 0 < u \leq 1 \end{cases} \]

The function \(j_\lambda \), verifying \(j_\lambda'(v) = \rho_\lambda(v) \), was studied in [9]. We give its principal properties in Lemma 1.

Our main result is the following:

Theorem 1:

Let \(f \in \xi_{\lambda, \delta} \). There exist a constant \(A(f) \) such as for all sufficiently large \(x \):

\[
S_f(x, y) = A(f)(\log f(y))^{\lambda-1} \rho_\lambda(v) \{ 1 + O\left(\frac{\log v}{\inf(\log f(y), \log x)}^\delta \right) \}
\]

for a suitable constant \(C_0 \).

The following theorem is the generalization of (1):

Theorem 2:

Let \(f \in \xi_{\lambda, \delta} \). For all sufficiently large \(x \)

\[
S_f(x, y) = A(f)x(\log f(y))^{\lambda-1} \rho_\lambda(v) \{ 1 + O\left(\frac{\log v}{\inf(\log f(y), \log x)}^\delta \right) \}
\]

uniformly in \((H'_{f, \delta, C_0})\), where \(A(f) \) is the constant of theorem 1.

2 Preliminary lemmas

Lemma 1 : Properties of \(j_\lambda \):
1) \(j_k(u) \) is a strictly increasing function in \([0, +\infty[\) \hspace{1cm} (2.1.1)

2) \(j_k(u) \) converges to 1 as \(u \to +\infty \) \hspace{1cm} (2.1.2)

3) \(j_\lambda(u) \geq \frac{1}{2} \), for \(u > \lambda \) \hspace{1cm} (2.1.3)

4) For \(v \geq 0 \) and \(a \in]0, v[\):

\[
\frac{j_\lambda(v)}{v^\lambda} - \frac{j_\lambda(a)}{a^\lambda} = -\lambda \int_a^v \frac{j_\lambda(x-1)}{x^{\lambda+1}} dx
\] \hspace{1cm} (2.1.4)

5) For \(v \in]1, 2[\):

\[
j_\lambda(v) = \frac{1}{\Gamma(\lambda + 1)} [v^\lambda - \lambda \int_1^v \frac{(v-h)^\lambda}{h} dh]
\] \hspace{1cm} (2.1.5)

6) For \(v \geq 1 \):

\[
j_\lambda(v) = v^\lambda [\frac{1}{\Gamma(\lambda + 1)} - \lambda \int_1^v \frac{j_\lambda(u-1)}{u^{\lambda+1}} du]
\] \hspace{1cm} (2.1.6)

7) For \(v \geq 1 \):

\[
j_\lambda(v) = \frac{\lambda}{v} \int_{v-1}^v j_\lambda(t) dt + \frac{1}{v} \int_1^v j_\lambda(t) dt + \frac{1}{v(\lambda + 1) \Gamma(\lambda + 1)}.
\] \hspace{1cm} (2.1.7)

Proof:

1), 2), 3) and 7) :see [11].

4) We have \((x^{-\lambda} j_\lambda(x))' = \frac{1}{x^{\lambda+1}} [-\lambda j_\lambda(x) + x j_\lambda'(x)] = \frac{1}{x^{\lambda+1}} (-\lambda j_\lambda(x - 1))\).

When we integrate the two sides of this equality with respect to \(x \) from \(a \) to \(v \), we obtain the result.

5) The proof is deduced from 4) in the particular case \(v \in]1, 2[\) and \(a = 1 \). Indeed

\[
\frac{j_\lambda(v)}{v^\lambda} - \frac{1}{\Gamma(\lambda + 1)} = -\frac{\lambda}{\Gamma(\lambda + 1)} \int_1^v \frac{(x-1)^\lambda}{x^{\lambda+1}} dx
\]

\[\implies j_k(v) = \frac{1}{\Gamma(\lambda + 1)} [v^\lambda - \lambda \int_1^v \frac{1}{x(v - x)^\lambda} dx].\]

With the change of variable \(h = \frac{x}{z} \) we obtain:

\[
j_\lambda(v) = \frac{1}{\Gamma(\lambda + 1)} [v^\lambda - \lambda \int_1^v \frac{(v-h)^\lambda}{h} dh], \quad (v \in]1, 2[).\]
This proves (2.1.5)
6) Taking \(a = 1 \) in the equation (2.1.4).

Lemma 2:

Let \(f \in \xi_{\lambda, \delta} \). We have

1)

\[
L(y, t) = \lambda \log_2 t - \lambda \log_2(f(y)) + O((\log f(y))^{-\delta}), \hspace{1em} (t > 0)
\]
(2.2.1)

2)

\[
\sum_{f(p) \leq x} \frac{\log f(p)}{(f(p))^2} = \int_{1/c}^{x} \frac{1}{t} d \left(\sum_{f(p) \leq t} \frac{\log f(p)}{f(p)} \right) \ll (\log x)^{1-\delta}
\]
(2.2.2)

3)

\[
\sum_{f(p^k) \leq x \atop k \geq 2} \frac{1}{f(p^k)} \ll (\log x)^{-\delta}.
\]
(2.2.3)

Proof:

1) by Abel summation based on \((\Omega_1^*)\) we deduced that

\[
L(y, t) = \sum_{f(p) \leq t} \frac{1}{f(p)} = \int_{f(y)}^{t} \frac{1}{\log x} d \left(\sum_{f(p) \leq x} \frac{\log f(p)}{f(p)} \right)
\]

\[= \lambda \log_2 t - \lambda \log_2(f(y)) + O((\log f(y))^{-\delta}).\]

2) Using Abel summation based on \((\Omega_1^*)\), we obtain (2.2.2)

3) We obtain (2.2.3) by \((\Omega_2)\).

Lemma 3:

Suppose \(f \in \xi_{\lambda, \delta} \). Then for \(v \in [1, \lambda + 2] \) we have

\[
\sum_{f(y) < f(p) \leq cx} \frac{1}{f(p)}.(\log \frac{x}{f(p)})^\lambda = \lambda.(\log f(y))^\lambda.\left[\int_{1}^{v} \frac{(v-h)^\lambda}{h} dh + O(\frac{1}{(\log f(y))^{\delta}}) \right].
\]
(2.3)

Proof:
Let M denote the sum on the left hand side of the lemma. By Abel summation, we get:

$$M = \int_{f(y)}^{cx} (\log\left(\frac{x}{t}\right))^\lambda \cdot d\left(\sum_{f(y) < f(p) \leq t} \frac{1}{f(p)}\right) = \int_{f(y)}^{cx} (\log(\frac{x}{t}))^\lambda \cdot d(L(y, t))$$

$$= \left[(\log(\frac{x}{t}))^\lambda \cdot L(y, t)\right]_{t=f(y)}^{t=cx} + \lambda \int_{f(y)}^{cx} \frac{t}{t} \cdot \frac{(\log(\frac{x}{t}))^{\lambda-1}}{t} L(y, t) \, dt = A + B$$

$$\Rightarrow M = A + B.$$

The quantity A is equal to

$$(\log(\frac{x}{cx}))^\lambda \cdot [\lambda \log_2 cx - \lambda \log_2 f(y) + O((\log x)^{-\delta})] - (\log(\frac{x}{f(y)}))^\lambda \cdot [\lambda \log_2 f(y) - \lambda \log_2 f(y)] + O((\log x)^{-\delta})]$.$

And B is equal to

$$-[\log(\frac{x}{t}))^\lambda \cdot \log_2(t)]_{t=f(y)}^{t=cx} + \lambda \int_{f(y)}^{cx} \frac{(\log(\frac{x}{t}))^\lambda}{t \log t} \, dt$$

$$+ \lambda \log_2 f(y)[(\log(\frac{x}{t}))^\lambda]_{t=f(y)}^{t=cx} + O((\log(f(y)))^{\lambda-\delta}).$$

After simplification, we get

$$M = \int_{f(y)}^{cx} \frac{(\log(\frac{x}{t}))^\lambda}{t \log t} \, dt + O((\log f(y))^{\lambda-\delta}).$$

Let G denote the integral

$$\int_{f(y)}^{cx} \frac{(\log(\frac{x}{t}))^\lambda}{t \log t} \, dt$$

$$G = \int_{f(y)}^{cx} \frac{(\log(\frac{x}{t}))^\lambda}{t \log t} \, dt$$

$$= \lambda (\log f(y))^\lambda [1 + O(\frac{1}{\log f(y)})] \cdot \int_{f(y)}^{cx} (v - \frac{\log ct}{\log f(y)})^\lambda \cdot \frac{1}{t \log ct} \, dt.$$

With the change of variable $h = \frac{\log ct}{\log f(y)}$, we obtain

$$G = \lambda (\log f(y))^\lambda [1 + O(\frac{1}{\log f(y)})] \cdot \int_{1+\frac{\log ct}{\log f(y)}}^{\frac{\log ct}{\log f(y)}} (v - h)^\lambda \cdot \frac{1}{h} \, dh.$$
Let
\[U = \int_{v}^{v+\frac{\log c_{\lambda,\delta}}{\log f(y)}} (v - h)^{\lambda} \frac{h}{\log f(y)} \, dh. \]

We remarks that
\[U = \int_{1}^{v} (v - h)^{\lambda} \frac{h}{\log f(y)} \, dh - \int_{1}^{v+\frac{\log c_{\lambda,\delta}}{\log f(y)}} (v - h)^{\lambda} \frac{h}{\log f(y)} \, dh \]
\[= \int_{1}^{v} (v - h)^{\lambda} \frac{h}{\log f(y)} \, dh - \int_{1}^{v+\frac{\log c_{\lambda,\delta}}{\log f(y)}} (v - h)^{\lambda} \frac{h}{\log f(y)} \, dh - U_{1} - U_{2}. \]

It’s clearly that \(U_{1} \) and \(U_{2} \) are at most \(\ll \frac{1}{\log f(y)} \), then
\[G = \lambda (\log f(y))^{\lambda} [1 + O\left(\frac{1}{\log f(y)} \right)] \left[\int_{1}^{v} (v - h)^{\lambda} \frac{h}{\log f(y)} \, dh + O\left(\frac{1}{\log f(y)} \right) \right] \]
\[= \lambda (\log f(y))^{\lambda} \left[\int_{1}^{v} (v - h)^{\lambda} \frac{h}{\log f(y)} \, dh + O\left(\frac{1}{\log f(y)} \right) \right]. \]

This proves the lemma

Lemma 4:

Suppose \(f \in \xi_{\lambda,\delta} \) and \(v \in [0, \lambda + 2] \), then
\[F_{f}(x, y) = F_{f}(x) - \sum_{f(y) < f(p) \leq \epsilon x} \frac{1}{f(p)} F_{f}\left(\frac{x}{f(p)}\right) p + O((\inf(\log f(y), \log x))^{\lambda-\delta}) \quad (2.4) \]

where \(F_{f}(x) = F_{f}(x, x) = \sum_{f(n) \leq x} \frac{1}{f(n)}. \)

Proof

\[F_{f}(x, y) = F_{f}(x) - \sum_{f(n) \leq x} \frac{1}{f(n)} = F_{f}(x) - S_{0}. \]

When we rearrange the sum \(S_{0} \) following the largest prime divisor of \(n \), we obtain
\[S_{0} = \sum_{p \geq y} \sum_{f(n) \leq x \atop P(n) = p} \frac{1}{f(n)}. \]
Average of some multiplicative functions

\begin{align*}
&= \sum_{p > y} \sum_{f(n) \leq x} \frac{1}{f(n)} + \sum_{p > y} \sum_{f(n) \leq x; P(n) = p} \frac{1}{f(n)} \\
&= \sum_{p > y} \frac{1}{f(p)} \sum_{f(m) \leq \frac{x}{p}} \frac{1}{f(m)} + \sum_{p > y} \sum_{f(p^k) \leq x; k \geq 2} \frac{1}{f(p)} \sum_{f(m) \leq \frac{x}{f(p^k)}} \frac{1}{f(m)} \\
&= \sum_{f(y) < f(p) \leq cx} \frac{1}{f(p)} \cdot f_f \left(\frac{x}{f(p)}, p \right) - \sum_{f(y) < f(p) \leq cx} \frac{1}{f(p)} \sum_{f(m) \leq \frac{x}{f(p^k)}} \frac{1}{f(m)} = T_p + R_1 + R_2.
\end{align*}

We verify that \(R_1 \ll \frac{F_f(cx)}{f(y)} \ll (\log x)^{\lambda - \delta} \). And by Abel summation, \(R_2 \) is at most

\[
\int_{f(y)}^{cx} \frac{(\log \frac{x}{t})^\lambda}{\log t} dt \left(\sum_{f(p^k) \leq t; k \geq 2} \frac{\log f(p^k)}{f(p^k)} \right) \ll (\log x)^{\lambda - \delta}.
\]

This proves (2.4)

Lemma 5:

Let \(f \in \xi_{\lambda, \delta} \). For \(v \in [1, \lambda + 2] \)

\[
\sum_{f(y) < f(p) \leq cx} \frac{(\log f(p))^\lambda j_\lambda(v_p - 1)}{f(p)} = \lambda v^\lambda (\log f(y))^\lambda \int_1^v \frac{j_\lambda(u - 1)}{u^{\lambda + 1}} du + O((\log f(y))^{\lambda - \delta});
\]

 où \(v_p = \frac{\log cx}{\log f(p)} \).

Proof: Let \(I \) denote the sum on the left side of (2.5) and a double integration by parts applied to \(I \) gives

\[
I = \int_{f(y)}^{cx} (\log t)^\lambda \cdot j_\lambda \left(\frac{\log cx}{\log t} - 1 \right) dt \left(\sum_{f(y) < f(p) \leq t} \frac{1}{f(p)} \right) = \lambda \int_{f(y)}^{cx} j_\lambda \left(\frac{\log cx}{\log t} - 1 \right)(\log t)^\lambda \frac{dt}{t \log t} + O((\log f(y))^{\lambda - \delta}).
\]
With the change of variable \(u = \frac{\log cx}{\log t} \), we obtain (2.5).

Lemma 6:

\[
(\log cx)F_f(x, y) \leq (\log c).F_f(x, y) + \int_{\frac{1}{c}}^{x} \frac{F_f(t, y)}{t} dt + \sum_{\frac{1}{c} \leq f(p^k) \leq cx \atop p \leq y : k \geq 1} F_f(\frac{x}{f(p^k)}, y) \frac{\log f(p^k)}{f(p^k)};
\]

\((v \geq 1, f \in \xi)\).

Proof:

This inequality can be easily established by evaluating the sum

\[
S = \sum_{f(n) \leq x \atop P(n) \leq y} \frac{\log(\log f(n))}{f(n)};
\]

in two different ways: On the one hand, we have:

\[
S = \int_{\frac{1}{c}}^{x} \log ct \, d(F_f(t, y)) = (\log cx).F_f(x, y) - \int_{\frac{1}{c}}^{x} \frac{F_f(t, y)}{t} dt \quad (*).
\]

On the other hand, partial summation yields

\[
S = (\log c).F_f(x, y) + \sum_{f(n) \leq x \atop P(n) \leq y} \frac{1}{f(n)} \sum_{p \leq y} \frac{\log f(p^k)}{f(p^k)} \sum_{\frac{1}{c} \leq f(p) \leq cx : k \geq 1} \frac{1}{f(m)}
\]

\[
\Rightarrow S = (\log c).F_f(x, y) + \sum_{p \leq y} \frac{\log f(p^k)}{f(p^k)} \sum_{\frac{1}{c} \leq f(m) \leq f(p^k) : k \geq 1} \frac{1}{f(m)} \sum_{P(m) \leq y : (m, p) = 1} \frac{1}{f(m)}
\]

\[
\Rightarrow S \leq (\log c).F_f(x, y) + \sum_{p \leq y} \frac{\log f(p^k)}{f(p^k)} \sum_{1 \leq f(p^k) \leq cx : k \geq 1} F_f(\frac{x}{f(p^k)}, y) \quad (**)
\]

and the result follows on equating the two expressions (*) and (**).

Lemma 7:

Suppose \(f \in \xi \) and for \(\theta \in]0, 1[\); we have:

\[
\sum_{1 \leq f(p) \leq (f(y))^\theta} j_\lambda(v - \frac{\log f(p)}{\log f(y)}) \frac{\log f(p)}{f(p)} = \lambda \log f(y) \cdot \int_0^\theta j_\lambda(v - u) du + O((\log f(y))^{1-\delta}).
\]

(2.7)
Proof:

We consider \(s(z) = \sum_{f(p) \leq z} \frac{\log f(p)}{f(p)} \) and \(r(z) = s(z) - \lambda \log z \).

One deduces from \((\Omega^*_1)\) that there exists a constant \(A > 0 \) such that:
\[
|r(z)| \leq A \cdot (\log z)^{1-\delta}.
\]

Denote the left-hand side of the above formula by \(S \). Partial summation yields
\[
S = \int_{1}^{(f(y))^\theta} j_\lambda(v - \frac{\log t}{\log f(y)}) \, d(s(t))
\]
\[
= \lambda \int_{1}^{(f(y))^\theta} j_\lambda(v - \frac{\log t}{\log f(y)}) \frac{dt}{t} + \int_{1}^{(f(y))^\theta} j_\lambda(v - \frac{\log t}{\log f(y)}) \, ds(t) - \lambda \log t
\]
\[
= M + R.
\]

With the change of variable : \(u = \frac{\log t}{\log f(y)} \), we obtain
\[
M = \lambda \log f(y) \cdot \int_{0}^{\theta} j_\lambda(v - u) \, du.
\]

The term \(R \) is at most of order
\[
j_\lambda(v - \theta). |r((f(y))^\theta)| - \int_{1}^{(f(y))^\theta} r(t) \frac{d}{dt}[j_\lambda(v - \frac{\log t}{\log f(y)})] \, dt
\]
\[
\quad \Rightarrow \ll j_\lambda(v - \theta). |r((f(y))^\theta)| + (\log f(y))^{1-\delta} \int_{1}^{(f(y))^\theta} j'_\lambda(v - \frac{\log t}{\log f(y)}) \, dt
\]
\[
\quad \ll j_\lambda(v - \theta). |r((f(y))^\theta)| + (\log f(y))^{1-\delta}(j_\lambda(v - \theta) - j_\lambda(v))
\]
\[
\quad \ll (\log f(y))^{1-\delta}.
\]

This complete the proof of Lemma.

3 Proof of theorem 1

Proposition 0 :

Let \(f \in \xi_{\lambda,\delta} \). Then for all sufficiently large \(x \):
\[
F_f(x) = C(f) \cdot (\log x)^\lambda + O((\log x)^{\lambda-\delta}); \quad \lambda \geq 1, \quad \delta \in (0, 1]
\]
(3.1)
where \(C(f) = \frac{A(f)}{\Gamma(\lambda + 1)} \) and \(A(f) \) defined in theorem 1.

Proof of proposition 0:

On the one hand, we have

\[
\sum_{f(n) \leq x} \frac{\log f(n)}{f(n)} = \sum_{f(n) \leq x} \frac{1}{f(n)} \sum_{p^k \mid n} \log f(p^k) = \sum_{f(m)f(p^k) \leq x} \frac{\log f(p^k)}{f(p^k)f(m)} = D. \tag{P.1}
\]

On the other hand, partial summation yield

\[
\sum_{f(n) \leq x} \frac{\log f(n)}{f(n)} = \int_{1/c}^{x} \log t \, d(F_f(t)) = (\log x)F_f(x) - \int_{1/c}^{x} F_f(t) \frac{dt}{t}. \tag{P.2}
\]

The sum on the right of (P.1) is equal to

\[
\sum_{f(m)f(p^k) \leq x} \frac{\log f(p^k)}{f(m)f(p^k)} = D_1 + D_2
\]

after separating terms corresponding to \(k = 1 \) and \(k \geq 2 \). By \((\Omega_2)\), the sum \(D_2 \) is at most

\[
\sum_{f(m) \leq x} \frac{1}{f(m)} \sum_{p,k \geq 2} \frac{\log(f(p^k))}{f(p^k)} \ll F_f(x).
\]

The quantity \(D_1 \) is equal to

\[
\sum_{f(m) \leq x} \frac{1}{f(m)} \sum_{f(p) \leq x/\gamma(m)} \frac{\log f(p)}{f(p)} - \sum_{f(l)f(p^k) \leq x} \frac{\log f(p)}{f(l)f(p)f(p^k)} = B_1 + B_2
\]

Define

\[
T(x) = \int_{1/c}^{x} \frac{F_f(t)}{t} dt = \sum_{f(m) \leq x} \frac{\log(x/\gamma(m))}{f(m)}. \tag{P.3}
\]

So that, by \((\Omega_1^\dagger)\)

\[
B_1 = \sum_{f(m) \leq x} \frac{1}{f(m)} \{ \lambda \log(x/\gamma(m)) + O((\log x)^{1-\delta}) \} = \lambda T(x) + O(F_f(x)(\log x)^{1-\delta}).
\]
Using (2.2.2) and (2.2.3), the sum B_2 is at most
\[
\sum_{f(l)(f(p))^2 \leq x} \frac{\log f(p)}{f(l)(f(p))^2} + \sum_{f(l)(f(p))(f(p^k)) \leq x} \frac{\log f(p)}{f(l)f(p)(f(p^k))} \lesssim \sum_{f(l) \leq x} \frac{1}{f(l)} \sum_{f(p) \leq \sqrt{x}} \frac{\log f(p)}{(f(p))^2} + \sum_{f(l) \leq x} \frac{1}{f(l)} \sum_{(f(p))(f(p^k)) \leq cx} \frac{\log f(p)}{f(p)(f(p^k))} \lesssim F_f(x)(\log x)^{1-\delta}.
\]

Finally, after appeal to (P.1), (P.2) and (P.3), we conclude that
\[
(\log x)F_f(x) = T(x) + O(F_f(x)) + [\lambda T(x) + O(F_f(x)(\log x)^{1-\delta})].
\]

And, for
\[
\varepsilon(x) \ll (\log x)^{-\delta} \quad (P.4)
\]

we have
\[
F_f(x) = \frac{\lambda + 1}{\log x} T(x) + F_f(x)\varepsilon(x).
\]

If x is a large enough, say $x \geq x_0$, then
\[
|\varepsilon(x)| \leq 1/2, \quad x \geq x_0 \quad (P.5)
\]

and we have the useful expression
\[
F_f(x) = \frac{1}{1-\varepsilon(x)} \frac{\lambda + 1}{\log x} T(x), \quad x \geq x_0. \quad (P.6)
\]

Let
\[
E(x) = \log\left(\frac{(\lambda + 1)T(x)}{(\log x)^{\lambda+1}}\right)
\]

and note that, by (P.3) and (P.6)
\[
E'(x) = \frac{(\lambda + 1)\varepsilon(x)}{x \log x(1-\varepsilon(x))} \ll \frac{1}{(\log x)^{1+\delta}}, \quad x \geq x_0.
\]

Hence $E_0 = \int_{1+}^{\infty} E'(x)dx$ converge absolutely, and therefore
\[
\int_x^{\infty} E'(z)dz = \int_{1+}^{\infty} E'(z)dz - \int_{1+}^{x} E'(z)dz = E_0 - (E(x) - E(1^+)).
\]
On writing \(C(f) = \exp(E_0 + E(1^+)) \)
\[
\exp(E(x)) = \frac{(\lambda + 1).T(x)}{(\log x)^{(\lambda + 1)}} = C(f). \exp(- \int_x^\infty E'(z)dz) = C(f)[1 + O((\log x)^{-\delta})].
\]
When we substitute this in (P.6) and use (P.4), we obtain
\[
F_f(x) = C(f). (\log x)^{\lambda} + O((\log x)^{\lambda-\delta}); \quad \lambda \geq 1, \quad \delta \in]0, 1[. \quad (P.7)
\]
To determine \(C(f) \), we agree as follows. For \(s > 1 \) and \(u \in \mathbb{R} \), by Abel summation, we have
\[
\sum_{f(n) \leq u} \frac{1}{(f(n))^s} = \int_{1/c}^u \frac{1-s}{c} d(F_f(t)) = F_f(u)u^{1-s} + (s-1). \int_{1/c}^u \frac{F_f(x)}{x^s}dx. \quad (P.8)
\]
Using (P.7)
\[
F_f(u)u^{1-s} = u^{1-s}[C(f). (\log u)^{\lambda} + O((\log u)^{\lambda-\delta})]
\]
then
\[
\lim_{u \to \infty} F_f(u)u^{1-s} = 0. \quad (P.9)
\]
The quantity on the right of (P.8) is equal (by (P.7)) to
\[
(s-1)[\int_1^{+\infty} \frac{C(f)(\log x)^{\lambda}}{x^s}dx + O(\int_{1/c}^{+\infty} \frac{C(f)(\log x)^{\lambda-\delta}}{x^s}dx+1)] = C(f).\Gamma(\lambda+1)(s-1)^{-\lambda}+O(s-1).
\]
When we substitute this in (P.8) and using (P.9), we obtain
\[
\sum_{f(n) \geq 1/c} \frac{1}{f(n)^s} = C(f). \frac{\Gamma(\lambda+1)}{(s-1)^\lambda} + O(s-1).
\]
So that
\[
C(f) = \frac{1}{\Gamma(\lambda+1)}. \lim_{s \to 1^+} [(s-1)^\lambda. \sum_{f(n) \geq 1/c} \frac{1}{f(n)^s}].
\]
On the other hand \(\lim_{s \to 1^+} [(s-1)\zeta(s)] = 1 \), hence
\[
C(f) = \frac{1}{\Gamma(\lambda+1)}. \lim_{s \to 1^+} [(\prod_p (1-p^{-s})^{-\lambda}).(\sum_{f(n) \geq 1/c} \frac{1}{f(n)^s})].
\]
This proves the proposition.
Theorem 1 is obtained by combining the two following propositions.

Proposition 1:
Let \(f \in \xi_{\lambda, \delta} \). For \(v \in]0, \lambda + 2[\), we have
\[
F_f(x, y) = A(f)(\log(f(y))^\lambda j_{\lambda,v}(v)\{1 + O((\inf(\log f(y),\log x)^{-\delta})\}).
\] (3.2)

Proposition 2:
Let \(f \in \xi_{\lambda, \delta} \). For \(\lambda + 2 \leq v \leq \exp(\frac{1}{\lambda_0}\log(f(y))) \)
\[
F_f(x, y) = A(f).\log(f(y))^\lambda j_{\lambda,v}(v).[1 + O(\frac{\log v}{\log(f(y))^\delta})].
\] (3.3)

Proof of Proposition 1:
We proceed inductively, we will proves that
\[
\text{For } y \geq y_0, \text{ for all } k \in [1, \lambda + 2] \text{ and for all } v \in]k-1, k[, \text{ we have :}
\]
\[
(R) \quad F_f(x, y) = A(f)(\log(f(y))^\lambda j_{\lambda,v}(v)\{1 + O((\inf(\log f(y),\log x)^{-\delta})\}).
\]

Let \(T_p \) denote the sum on the right hand side of (2.4).

- \(k = 1, v \in]0, 1[\iff 1 < cx \leq f(y) \).

We verify that \(T_p = 0 \), hence the expression (2.4) became :
\[
F_f(x, y) = F_f(x) + O((\log x)^{\lambda-\delta}) = F_f(x) \quad (P.1.1).
\]

And we remarks that \((\frac{\log x}{\log cx})^\lambda = 1 + O(\frac{1}{\log x})\), then we deduce from (3.1) that
\[
F_f(x, y) = A(f)\frac{v^\lambda}{\Gamma(\lambda + 1)}(\log f(y))^\lambda[1 + O((\log x)^{-\delta})] \quad (y \geq y_0) \quad (P.1.2)
\]

which establishes the equality (R) for \(k = 1 \), since \(j_k(v) = \frac{v^\lambda}{\Gamma(\lambda + 1)} \text{ in }]0, 1[\).

- \(k = 2, v \in]1, 2[\iff f(y) \leq cx \leq (f(y))^2 \).

In this case, we remarks that for \(f(y) < f(p) \), the \(F_f(\frac{x}{f(p)}, p) \) verify (P.1.1), hence
\[
T_p = C(f) \sum_{f(y) < f(p) \leq cx} \frac{1}{f(p)}(\log(f(y))^\lambda + O(\sum_{f(y) < f(p) \leq cx} \frac{1}{f(p)}(\log(f(y))^\lambda-\delta))) = M + R.
\]

Using (2.2.1), the error term bellows is at most
\[
\sum_{f(y) < f(p) \leq cx} \frac{1}{f(p)}(\log(f(y))^\lambda-\delta) \ll (\log f(y))^\lambda-\delta \quad \sum_{f(y) < f(p) \leq cx} \frac{1}{f(p)} \ll (\log f(y))^\lambda-\delta.
\]
and after appeal to lemma 3, the sum on (P.1.2) is equal to
\[C(f) \lambda (\log f(y))^\lambda \left[\int_1^v \frac{(v-h)^\lambda}{h} dh + O\left(\frac{1}{(\log f(y))^\delta} \right) \right]. \]
Hence
\[T_p = C(f)M + R = C(f) \lambda (\log f(y))^\lambda \left[\int_1^v \frac{(v-h)^\lambda}{h} dh + O\left(\frac{1}{(\log f(y))^\delta} \right) \right]. \]
When we substitute the expression of \(T_p \) in (2.4), we have
\[F_f(x, y) = F_f(x) - C(f) \lambda (\log f(y))^\lambda \int_1^v \frac{(v-h)^\lambda}{h} dh + O((\log(f(y))^{\lambda - \delta}) \]
and using (2.1.5) and proposition 0, we obtain:
\[F_f(x, y) = A(f)(\log f(y))^\lambda j_\lambda(v)[1 + O((\log f(y))^{-\delta})]. \]
This proves (R) for \(k = 2 \). Let \(k \in [2, \lambda + 1] \); assume that (R) is verified for all integers \(k_0 \in [1, k] \) and we have to prove that (R) is also true for \(k + 1 \). For this, let \(v \in [k, k + 1] \).

We remarks that for \(f(p) > f(y) \), \(v_p = \frac{\log f(y)}{\log f(p)} = \frac{\log cx}{\log f(p)} - 1 \leq v - 1 \leq k \), hence, when we applying the induction hypothesis to the term \(F_f(\frac{x}{f(p)}, p) \), we obtain
\[F_f(\frac{x}{f(p)}, p) = A(f)(\log f(p))^\lambda j_\lambda(v_p)[1 + O((\log f(y))^{-\delta})]. \]
So
\[T_p = A(f)[\sum_{f(y) < f(p) \leq cx} \frac{\log f(p)^\lambda j_\lambda(v_p)}{f(p)} + O\left(\sum_{f(y) < f(p) \leq cx} \frac{\log f(p)^\lambda j_\lambda(v_p)}{f(p)}(\log f(y))^{-\delta} \right)] \]
\[= A(f)[I + R]. \]
On the one hand, using lemma 5, we have
\[I = \lambda v^\lambda (\log f(y))^\lambda \int_1^v j_\lambda\left(\frac{u-1}{u^{\lambda+1}} \right) du + O((\log f(y))^{\lambda - \delta}). \]
On the other hand, by (2.2.1) and since \(j_\lambda(.) \ll 1 \), we obtain:
\[R \ll (\log f(y))^{\lambda - \delta}. \sum_{f(y) < f(p) \leq cx} \frac{1}{f(p)} \ll (\log f(y))^{\lambda - \delta} \lambda \log(v) \ll (\log f(y))^{\lambda - \delta}. \]
Hence, the expression (2.4) is

\[F_f(x, y) = F_f(x) - \lambda v^\lambda (\log f(y))^{\lambda} \int_1^v \frac{j_\lambda(u - 1)}{u^{\lambda+1}} du + O((\log f(y))^{\lambda-\delta}). \tag{P.1.3} \]

Finally, using proposition 0 and (2.1.6), the expression (P.1.3) is equal to

\[F_f(x, y) = A(f)(\log f(y))^{\lambda} j_\lambda(v)[1 + O((\log f(y))^{-\delta})] \]

and (R) is verified of \(k + 1 \). This proves the proposition.

Proof of Proposition 2:

We deduce from proposition 1 that if \(v \in [0, \lambda + 2] \)

\[F_f(x, y) = A(f)(\log f(y))^{\lambda} j_\lambda(v)[1 + O((\log f(y))^{-\delta})]. \tag{P.2.1} \]

For \(v \geq \lambda \), define \(\Delta(v, y) \) by the following formula

\[F_f(x, y) = A(f)(\log f(y))^{\lambda} j_\lambda(v)[1 + \Delta(v, y)] \tag{P.2.2} \]

Let

\[\Delta^*(v, y) = \sup_{\lambda+1 \leq v' \leq v} |\Delta(v', y)| \]

then we have by (P.2.1)

\[\Delta^*(v, y) \ll (\log f(y))^{-\delta}, \quad \lambda < v \leq \lambda + 2. \tag{P.2.3} \]

Our goal here is to prove

\[\Delta^*(v, y) \ll \frac{\log v}{(\log f(y))^{\delta}} \tag{P.2.4} \]

uniformly for \(v \geq \lambda + 2 \) and for all sufficiently large \(y \) to prove the proposition. First, we return to the inequality in Lemma 6.

By (P.2.2), for \(v \geq \lambda + 2 \), we have

\[\left(\log cx \right) \{A(f)(\log f(y))^{\lambda} j_\lambda(v)[1 + \Delta(v, y)]\} \leq \left(\log c \right) A(f)(\log f(y))^{\lambda} j_\lambda(v)[1 + \Delta(v, y)] \]

\[+ \int_{\frac{v}{2}}^{\frac{v}{2}} \frac{F_f(t, y)}{t} dt + \sum_{1 \leq f(p^k) \leq cx \atop p \leq y, k \geq 1} A(f)(\log f(y))^{\lambda} j_\lambda(v) \frac{\log f(p^k)}{\log f(y)} \frac{[1 + \Delta(v - \frac{\log f(p^k)}{\log f(y)}, y)] - \log f(p^k)}{f(p^k)} \tag{P.2.5} \]
The sum on the right of (P.2.5) is equal, with the notation \(v_p = \frac{\log f(y)}{\log f(y)}\) and \(v_{p^k} = \frac{\log f(p^k)}{\log f(y)}\), \(k \geq 2\), to

\[
\sum_{1 \leq f(p^k) \leq cx \atop p \leq y; k \geq 1} A(f)(\log f(y))^{\lambda} j_\lambda(v - \frac{\log f(p^k)}{\log f(y)}).[1 + \Delta(v - \frac{\log f(p^k)}{\log f(y)}, y)].\frac{\log f(p^k)}{f(p^k)}
\]

\[
= \sum_{1 \leq f(p) \leq cx \atop p \leq y} A(f)(\log f(y))^{\lambda} j_\lambda(v - v_p).[1 + \Delta(v - v_p)].\frac{\log f(p)}{f(p)}
\]

\[
+ \sum_{1 \leq f(p^k) \leq cx \atop p \leq y; k \geq 2} A(f)(\log f(y))^{\lambda} j_\lambda(v - v_{p^k}).[1 + \Delta(v - v_{p^k})].\frac{\log f(p^k)}{f(p^k)}.
\]

We consider the integral in (P.2.5), namely

\[
\int_{\frac{f(y)}{c}}^{x} \frac{F_t(t, y)}{t} dt = \int_{\frac{f(y)}{c}}^{\frac{f(y)}{c} + 1} \frac{F_t(t)}{t} dt + \int_{\frac{f(y)}{c} + 1}^{x} \frac{F_t(t, y)}{t} dt.
\]

By proposition 0, the first integral on the right is

\[
\frac{C(f)}{\lambda + 1}(\log f(y))^{\lambda+1}.[1 + O((\log f(y))^{-\delta})].
\]

Using proposition 1 and the change of variables \(u = \frac{\log et}{\log f(y)}\), the portion of the second integral that corresponds to \(\frac{f(y)}{c} \leq t \leq \frac{(f(y))^{\lambda+2}}{c}\) is equal to

\[
A(f)(\log f(y))^{\lambda+1}\int_{1}^{\lambda+2} j_\lambda(u)du + O((\log f(y))^{\lambda+1-\delta})
\]

and the remaining portion contributes, with the notation in (P.2.2)

\[
= A(f)(\log f(y))^{\lambda+1}\int_{\lambda+2}^{v} j_\lambda(u).[1 + \Delta(u, y)]du.
\]

Hence

\[
\int_{\frac{f(y)}{c}}^{x} \frac{F_t(t, y)}{t} dt = \frac{C(f)}{\lambda + 1}(\log f(y))^{\lambda+1} + A(f)(\log f(y))^{\lambda+1}.\left[\int_{1}^{\lambda+2} j_\lambda(t)dt + \int_{\lambda+2}^{v} j_\lambda(t) \cdot \Delta(t, y) dt\right]
\]

\[
+ O((\log f(y))^{\lambda+1-\delta}) ; \quad C(f) = \frac{A(f)}{\Gamma(\lambda + 1)}.
\]
And, we deduced from the above, that the inequality (P.2.5) is

\[
1 + \Delta(v, y) \leq [1 + \Delta(v, y)] \left[\frac{\log c}{\log cx} + \frac{1}{\lambda(v) \log cx} \sum_{1 \leq f(p) \leq f(y)} \frac{\log f(p)}{f(p)} j_\lambda(v - v_p).[1 + \Delta(v - v_p, y)] \right]
\]

\[
+ \frac{1}{\lambda(v) \log cx} \sum_{1 \leq f(p) \leq f(y)} \frac{\log f(p)}{f(p_k)} j_\lambda(v - v_p).[1 + \Delta(v - v_p, y)]
\]

\[
+ \frac{\log f(y)}{(\lambda + 1)\Gamma(\lambda + 1)(\log cx)j_\lambda(v)} + \frac{\log f(y)}{(\log cx)j_\lambda(v)} \int_1^v j_\lambda(t) \, dt + \frac{\log f(y)}{(\log cx)j_\lambda(v)} \int_1^v j_\lambda(t) \Delta(t, y) \, dt
\]

\[
+ O\left(\frac{(\log f(y))^{1-\delta}}{j_\lambda(v) \log cx} \right).
\]

(P.2.6)

The second sum on the right of (P.2.6) is at most

\[
\frac{1 + \Delta^*(v, y)}{\log cx}
\]

by (Ω2). And using Lemma 7 (θ = 1), the first sum is equal to

\[
\frac{\lambda(\log f(y))}{j_\lambda(v) \log cx} \int_0^1 j_\lambda(v - t) \, dt + O\left(\frac{(\log f(y))^{1-\delta}}{j_\lambda(v) \log cx} \right)
\]

\[
+ \frac{1}{\lambda(v) \log cx} \sum_{1 \leq f(p) \leq f(y)} \frac{\log f(p)}{f(p)j_\lambda(v - v_p)} \Delta(v - v_p, y).
\]

We remarks that \(\int_0^1 j_\lambda(v - t) \, dt = \int_{v-1}^v j_\lambda(t) \, dt \), hence, with (2.1.7), the inequality (P.2.6) simplifies to

\[
\Delta(v, y) \leq \frac{1}{j_\lambda(v) \log cx} \sum_{1 \leq f(p) \leq f(y)} \frac{\log f(p)}{f(p)j_\lambda(v - v_p)} \Delta(v - v_p, y) + \frac{1}{v \lambda(v)} \int_1^v j_\lambda(t) \Delta(t, y) \, dt
\]

\[
+ O\left(\frac{1 + \Delta^*(v, y)}{v \log f(y)^{1-\delta}} \right).
\]

(P.2.7)

By vertue of Lemma 7 (θ = 1/2), the sum of the right of (P.2.7) that correspond to \(1 \leq f(p) \leq (f(y))^{1/2} \) contribute at most

\[
\frac{\Delta^*(v, y)}{v j_\lambda(v)} \left[\lambda \int_0^{\frac{1}{2}} j_\lambda(v - t) \, dt + O((\log f(y))^{-\delta}) \right]
\]
(since \(0 < \frac{\log f(p)}{\log f(y)} \leq \frac{1}{2}\)) and the remaining term contribute at most

\[
\frac{\Delta^*(v - \frac{1}{2}, y)}{v \lambda(v)} \int_{\frac{1}{2}}^1 j_\lambda(v - t) dt + O((\log f(y))^{-\delta})
\]

(since \(\frac{1}{2} < \frac{\log f(p)}{\log f(y)} \leq 1\)).

We consider the integral in (P.2.7). We have

\[
\frac{1}{v \lambda(v)} \int_{\lambda+2}^v j_\lambda(t) \Delta(t, y) dt \leq \frac{1}{v \lambda(v)} \left[\int_1^{v-1} j_\lambda(t) \Delta(t, y) dt + \int_{v-1}^v j_\lambda(t) \Delta(t, y) dt \right]
\]

\[
\leq \frac{\Delta^*(v - 1, y)}{v \lambda(v)} \int_1^{v-1} j_\lambda(t) dt + \frac{\Delta^*(v, y)}{v \lambda(v)} \int_{v-1}^v j_\lambda(t) dt
\]

\[
\leq \frac{\Delta^*(v - \frac{1}{2}, y)}{v \lambda(v)} \int_1^{v-1} j_\lambda(t) dt + \frac{\Delta^*(v, y)}{v \lambda(v)} \int_{v-1}^v j_\lambda(t) dt
\]

and thus

\[
|\Delta(v, y)| \leq \Delta^*(v, y) \cdot \frac{1}{v \lambda(v)} \int_{v-1}^v j_\lambda(t) dt + \alpha(v) + \Delta^*(v - \frac{1}{2}, y) \cdot \frac{1}{v \lambda(v)} \int_1^{v-1} j_\lambda(t) dt + \beta(v)
\]

\[
+ O\left(1 + \Delta^*(v, y) \cdot \frac{1}{v (\log f(y))^\delta}\right). \tag{P.2.8}
\]

where

\[
\alpha(v) = \frac{\lambda}{v \lambda(v)} \int_0^{\frac{1}{2}} j_\lambda(v - t) dt
\]

and

\[
\beta(v) = \frac{\lambda}{v \lambda(v)} \int_1^{\frac{1}{2}} j_\lambda(v - t) dt.
\]

We note that

\[
\alpha(v), \beta(v) \leq \frac{\lambda}{2v}, \quad v > 1
\]

by the monotonicity of \(j_\lambda(.)\).

Introduce

\[
\alpha_1(v) = \frac{1}{v \lambda(v)} \int_{v-1}^v j_\lambda(t) dt + \alpha(v)
\]
and note, by (2.1.7), that

\[
\begin{align*}
&= \left[\frac{\lambda}{v \cdot j_\lambda(v)} \int_{v-1}^v j_\lambda(t)dt + \frac{1}{v \cdot j_\lambda(v)} \int_1^v j_\lambda(t)dt \right] - \left[\frac{1}{v \cdot j_\lambda(v)} \int_{v-1}^v j_\lambda(t)dt + \alpha(v) \right] \\
&= \frac{\lambda}{v \cdot j_\lambda(v)} \int_{v-1}^v j_\lambda(t)dt + \frac{1}{v \cdot j_\lambda(v)} \int_1^v j_\lambda(t)dt \\
&= \beta(v) + \frac{1}{v \cdot j_\lambda(v)} \int_1^{v-1} j_\lambda(t)dt \leq 1 - \alpha_1(v).
\end{align*}
\]

Hence, (P.2.8) simplifies to

\[
|\Delta(v, y)| \leq \Delta^*(v, y) \alpha_1(v) + \Delta^*(v - \frac{1}{2}, y) [1 - \alpha_1(v)] + O\left(\frac{1 + \Delta^*(v, y)}{v \log f(y)^\delta} \right) \quad v \geq \lambda + 2. \tag{P.2.9}
\]

We claim next that, by (P.2.9)

\[
|\Delta(v, y)| \leq \frac{1}{2} [\Delta^*(v, y) + \Delta^*(v - \frac{1}{2}, y)] + O\left(\frac{1 + \Delta^*(v, y)}{v \log f(y)^\delta} \right) \tag{P.2.10}
\]

uniformly for \(v \geq \lambda + 2 \) and if \(y \) is sufficiently large. Indeed, we observe that

\[
\frac{1}{2} \left[\Delta^*(v, y) + \Delta^*(v - \frac{1}{2}, y) \right] - \left[\Delta^*(v, y) \alpha_1(v) + \Delta^*(v - \frac{1}{2}, y) (1 - \alpha_1(v)) \right]
\]

\[
= \left(\frac{1}{2} - \alpha_1(v) \right) (\Delta^*(v, y) - \Delta^*(v - \frac{1}{2}, y))
\]

and this quantity is positive; for

\[
(\Delta^*(v, y) - \Delta^*(v - \frac{1}{2}, y)) \geq 0
\]

by the monotonicity of \(\Delta^* \), and

\[
\alpha_1(v) = \frac{1}{v \cdot j_\lambda(v)} \int_{v-1}^v j_\lambda(t)dt + \alpha(v) \leq \frac{1}{v} + \frac{\lambda}{2v} \leq \frac{1}{2}, \quad v \geq (\lambda + 2).
\]

This proves (P.2.10).

In order to show that (P.2.4) holds for \(v \geq \lambda + 2 \), first suppose that \(v - \frac{1}{2} \leq v' \leq v \).

Let \(A \) denote the \(O \)-constant in (P.2.10). By the monotonicity of \(\Delta^* \) and since \(\frac{1}{v'} \leq \frac{1}{v} \leq 1 - (2v)^{-1} \leq \frac{4}{3} \frac{1}{v} \) for \(v \geq (\lambda + 2) \) greater than 2

\[
\left| \Delta(v', y) \right| \leq \frac{1}{2} [\Delta^*(v', y) + \Delta^*(v' - \frac{1}{2}, y)] + A \left[\frac{1 + \Delta^*(v, y)}{v \log f(y)^\delta} \right]
\]
\[\leq \frac{1}{2}[\Delta^*(v, y) + \Delta^*(v - \frac{1}{2}, y)] + \frac{4}{3}A[\frac{1 + \Delta^*(v, y)}{v(\log f(y))^\delta}] \].

Now, if \((\lambda + 1) \leq v' \leq (v - \frac{1}{2})\), then
\[
|\Delta(v', y)| \leq \Delta^*(v - \frac{1}{2}, y) \leq \frac{1}{2}[\Delta^*(v, y) + \Delta^*(v - \frac{1}{2}, y)] + 4A\left(1 + \Delta^*(v, y)\right) \frac{1}{v(\log f(y))^\delta}.
\]
and it follows, by taking the on the right of \((P.2.10)\), that , uniformly for \(v \geq \lambda + 2\)
\[
\Delta^*(v, y) = \sup_{\lambda+1 \leq v' \leq v} |\Delta(y, v')| \leq \frac{1}{2}[\Delta^*(v, y) + \Delta^*(v - \frac{1}{2}, y)] + 4A\left(1 + \Delta^*(v, y)\right) \frac{1}{v(\log f(y))^\delta}.
\]
After rearranging terms we arrive at the inequality
\[
\Delta^*(v, y) \leq \Delta^*(v - \frac{1}{2}, y) + \frac{8}{3}A\left(1 + \Delta^*(v, y)\right) \frac{\log v}{v(\log f(y))^\delta}
\]
which we iterate to get
\[
\Delta^*(v, y) \leq \Delta^*(v_0, y) + \frac{8}{3}A\left(1 + \Delta^*(v, y)\right) \frac{\log v}{v(\log f(y))^\delta}
\]
where
\[
\lambda + 3/2 \leq v_0 \leq \lambda + 2
\]
By \((P.2.3)\), there exists \(A_1 > 0\) such that
\[
\Delta^*(v_0, y) \leq \frac{A_1}{(\log f(y))^\delta}
\]
and thus
\[
\Delta^*(v, y) \leq A^*[1 + \Delta^*(v, y)] \frac{\log v}{(\log f(y))^\delta}, \quad v \geq (\lambda + 2)
\]
where \(A^* = \sup(\frac{8}{3}A, A_1)\).
Hence
\[
\Delta^*(v, y)[1 - A^* \frac{\log v}{(\log f(y))^\delta}] \leq A^* \frac{\log v}{(\log f(y))^\delta}, \quad v \geq (\lambda + 2).
\]
With the condition \(1 \leq v \leq \exp\left(\frac{C_0(\log f(y))^\delta}{\log f(y)^\delta}\right)\), we have
\[
[1 - A^* \frac{\log v}{(\log f(y))^\delta}] \geq 1 - \frac{A^*}{C_0}
\]
and therefore, for \(C_0 > A^*\):
\[
\Delta^*(v, y) \ll \frac{\log v}{(\log f(y))^\delta}.
\]
This proves the theorem.
4 Proof of theorem 2

Lemma A:

Let $f \in \xi_{\lambda,\delta}$, then

$$S_f(x, y) \leq D \frac{x F_f(x, y)}{\log ecx}; \quad x > 1$$

where D is a suitable constant.

Proof:

All we need here to prove the claim is the following weak consequence of (Ω_1) and (Ω_2):

There exists two constant $a > 0$ and $b > 0$ such that:

$$\sum_{f(p) \leq z} \log f(p) \leq az; \quad z \geq 1 \tag{A.1}$$

and

$$\sum_{(p, k) \geq 2} \frac{\log f(p^k)}{f(p^k)} \leq b. \tag{A.2}$$

We have the equation

$$(\log cx) S_f(x, y) = \sum_{f(n) \leq x} \log \left(\frac{cx}{f(n)}\right) + \sum_{f(n) \leq x} \sum_{P(n) \leq y} \log f(n) = T + M. \tag{A.3}$$

Since, $\log z \leq z - 1$ for $z > 0$, we have: $0 \leq T \leq cx F_f(x, y) - S_f(x, y)$.

Also,

$$M = \sum_{f(m)f(p^k) \leq x; k \geq 1} \sum_{(m, p)=1; P(mp) \leq y} \log f(p^k)$$

$$\leq \sum_{f(m)f(p) \leq x} \sum_{P(m) \leq y} \log f(p) + \sum_{f(m)f(p^k) \leq x} \sum_{P(mp) \leq y, k \geq 2} \log f(p^k)$$

$$\leq \sum_{f(m) \leq x} \sum_{f(p) \leq \frac{x}{P(m)}} \log f(p) + \sum_{f(p^k) \leq x; k \geq 2} S_f\left(\frac{x}{f(p^k)}; y\right) \log f(p^k)$$

$$\leq ax F_f(x, y) + \sum_{f(p^k) \leq x; k \geq 2} \frac{x}{f(p^k)} F_f\left(\frac{x}{f(p^k)}; y\right) \log f(p^k)$$
by \((A.1)\) and the obvious inequality \(S_f(x, y) \leq xF_f(x, y)\) applied in the second sum.
Hence, by \((A.2)\)

\[
M \leq axF_f(x, y) + x \sum_{\frac{1}{e} \leq f(p) \leq 1} F_f(x, f(p), y) \log f(p) + x \sum_{1 < f(p) \leq x} F_f(x, f(p), y) \log f(p)
\]

\[
\leq axF_f(x, y) + bx F_f(x, y).
\]

Therefore

\[
S_f(x, y) \leq D \frac{x F_f(x, y)}{\log ecx}
\]

with \(D = c + a + b\).

Proposition A:

For \(f \in \xi_{\lambda, \delta}\) we have :

\[
(log cx)S_f(x, y) = \sum_{f(m) \leq x} \sum_{f(p) \leq \min(\frac{x}{f(m)}, f(y))} \log f(p) + O_{\lambda}(x(log f(y))^{\lambda}) ; v \geq 1.
\]

Proof:

We start again from the identity \((A.3)\). Suppose \(f(y) \leq cx\), we have

\[
M = \sum_{f(m)f(p) \leq x, (m,p)=1; P(m,p) \leq y} \log f(p) = \sum_{f(m) \leq x} \sum_{f(p) \leq \frac{x}{f(m)}, P(m) \leq y} \log f(p)
\]

\[
= \sum_{f(m) \leq x} \sum_{f(p) \leq \min(\frac{x}{f(m)}, f(y))} \log f(p) - \sum_{f(m)f(p) \leq x, p|m, P(mp) \leq y} \log f(p).
\]

This gives

\[
| (log cx)S_f(x, y) - \sum_{f(m) \leq x} \sum_{f(p) \leq \min(\frac{x}{f(m)}, f(y))} \log f(p) |
\]
Average of some multiplicative functions

\[\leq T + \left| \sum_{f(m)f(p) \leq x, \ p|m; P(mp) \leq y} \log f(p) \right| + \left| \sum_{f(m)f(p^k) \leq x; k \geq 2, \ P(mp) \leq y} \log f(p^k) \right| = T + M' + M''. \]

We shall show that \(T, M' \) and \(M'' \) have order of \(\frac{x(\log f(y))^\lambda}{(\log x)^\delta} \).

We have by lemma A

\[M' = \left| \sum_{f(l)f(p^{k+1}) \leq x; k \geq 1, \ (p,l)=1; P(pl) \leq y} \log f(p) \right| \]

\[= \left| \sum_{f(p^{k+1}) \leq x, \ p \leq y; k \geq 1} \sum_{f(l) \leq \frac{x}{f(p^{k+1})}} \log f(p) \right| \]

\[= \left| \sum_{f(p^k) \leq x, \ f(p) \leq f(y); k \geq 2} S_f\left(\frac{x}{f(p^k)}, y \right) \log f(p) \right| \]

\[\ll xF_f(cx, y) \left| \sum_{f(p^k) \leq x, \ f(p) \leq f(y); k \geq 2} \frac{1}{f(p^k)} \log \left(\frac{cx}{f(p^k)} \right) \log f(p) \right| \]

\[\ll xF_f(cx, y) \left[\sum_{f(p^k) \leq \sqrt{x}, \ f(p) \leq f(y); k \geq 2} \frac{1}{f(p^k)} \log \left(\frac{cx}{f(p^k)} \right) \log f(p) + \sum_{\sqrt{x} < f(p^k) \leq x, \ f(p) \leq f(y); k \geq 2} \frac{1}{f(p^k)} \log f(p) \right] \]

by (2.2.3) and \((\Omega_2) \).

The sum \(M'' \) is, for the same reasons, at most of order \(\frac{x(\log f(y))^\lambda}{(\log x)^\delta} \).
Finally, we estimate T. We see that, by Abel summation and lemma A

$$T = \int_{\frac{1}{c}}^{x} \log \left(\frac{x}{t} \right) d(S_f(t, y)) = \int_{\frac{1}{c}}^{x} S_f(t, y) \frac{dt}{t}\nless \int_{\frac{1}{c}}^{x} \frac{F_f(t, y)}{\log et} dt \nless F_f(x, y) \int_{\frac{1}{c}}^{x} \frac{dt}{\log et} \nless \frac{x F_f(x, y)}{\log x} \nless \frac{x (\log f(y))^\lambda}{(\log x)\delta}$$

This proves the lemma.

Proposition B:

Let $f \in \xi_{\lambda, \delta}$, then for $v \in]0, 1[$

$$S_f(x, y) = S_f(x) = \sum_{f(n) \leq x} 1 = \lambda C(f) x (\log x)^{\lambda-1} + O(x (\log x)^{\lambda-\delta-1}).$$

Proof:

In a first step, we will show that for $v \in]0, 1[$

$$S_f(x, y) = S_f(x) + O(x (\log x)^{\lambda-\delta-1}). \quad (B.1)$$

Indeed

$$S_f(x, y) = S_f(x) - \sum_{f(n) \leq x} 1 = S_f(x) - S_1.$$

When we rearrange the sum S_1 following the largest prime divisor of n, we obtain

$$S_1 = \sum_{f(y) < f(p) \leq cx} S_f \left(\frac{x}{f(p)}, p \right) - \sum_{f(y) < p \leq cx} \sum_{f(m) \leq \frac{x}{f(p)}} \sum_{P(m) = p} 1 + \sum_{f(p^k) \leq cx; k \geq 2} \sum_{p > y} S_f \left(\frac{x}{f(p^k)} \right) = K + K' + K''.$$

For $v \in]0, 1]$, $K = K' = 0$. On the other hand, by lemma A, proposition 0 and (Ω_2), K'' is at most

$$\sum_{f(p^k) \leq cx} \sum_{k \geq 2} \frac{x}{f(p^k) \log \left(\frac{cx}{f(p^k)} \right)} F_f \left(\frac{x}{f(p^k)} \right) \ll x (\log (cx))^{\lambda-\delta-1}$$

This proves $(B.1)$.
Using (B.1), (Ω₁) and proposition 0, the equation established in proposition A becomes

\[
[S_f(x) + O(x(\log x)^{λ-δ-1})] \log cx = \sum_{f(m) ≤ x \atop P(m) ≤ y} \left[\frac{x}{f(m)} + O\left(\frac{x}{f(m)} (\log(\frac{ecx}{f(m)})^{-δ}) \right) \right] + O\left(\frac{x F_f(x)}{(\log x)^{δ}} \right)
\]

\[
= λxF_f(x) + O(x(\log x)^{λ-δ}) + O(x \sum_{f(m) ≤ x \atop P(m) ≤ y} \frac{1}{f(m)} (\log(\frac{ecx}{f(m)})^{-δ}) ; v ∈ [0,1]. \tag{B.2}
\]

Now, let \(R \) denote the error term on the right of (B.2), and it suffices to show that \(R ≪ x(\log x)^{λ-δ} \).

Indeed, we have

\[
\int_{1/2}^{1} \frac{dt}{(\log ct)^{δ}} ≥ \frac{x}{f(m)} - 1/2 ≫ \frac{x}{f(m)} (\log(\frac{ecx}{f(m)})^{-δ})
\]

hence

\[
R ≪ \sum_{f(m) ≤ x \atop P(m) ≤ y} \int_{1/2}^{1} \frac{dt}{(\log ct)^{δ}} ≪ \int_{1/2}^{cx} S_f(\frac{x}{t}, y) \frac{dt}{(\log ct)^{δ}}.
\]

By lemma A and proposition 0, \(R \) is at most of order

\[
R ≪ x \int_{1/2}^{cx} \frac{F_f(x)}{t \log(\frac{ecx}{t})} (\log ct)^{δ} ≪ x(\log x)^{λ-1} \int_{1/2}^{cx} \frac{dt}{(\log ct)^{δ}} ≪ x(\log x)^{λ-δ}.
\]

Finally, we deduce that

\[
S_f(x) = λC(f)x(\log x)^{λ-1} + O(x(\log x)^{λ-δ-1}).
\]

Deduction of Theorem 2 from Theorem 1:

The proof of theorem 2 is obtained by combining theorem 1, lemma A and proposition A.

From proposition A, we obtain

\[
(\log cx)S_f(x, y) = \sum_{f(m) ≤ x \atop f(p) ≤ f(y)} \sum_{P(m) ≤ y} \log f(p)
\]
\[
\sum_{\substack{f(m) \leq x \atop P(m) \leq y}} \sum_{f(p) \leq f(y)} \log f(p) = \sum_{\substack{f(m) \leq x \atop P(m) \leq y}} \{\lambda f(y) + O(f(y)(\log f(y))^{-\delta})\}
\]

and using lemma A, we have
\[
f(y)S_f(x, y) \ll x \frac{F_f(x, y)}{\log(\frac{x}{f(y)})} \ll x(\log f(y))^{\lambda-1}
\]

(since \(F_f(x, y) \ll (\log f(y))^{\lambda}\) and \(\log f(y) \leq \log(\frac{ex}{f(y)})\) for \(v \geq 2\)).

Also, by \(\Omega_1\), we obtain
\[
\sum_{\substack{f(m) \leq x \atop P(m) \leq y}} \sum_{f(p) \leq f(y)} \log f(p) = \sum_{\substack{f(m) \leq x \atop P(m) \leq y}} \{\lambda \frac{x}{f(m)} + O(\frac{x}{f(m)}(\log(\frac{ex}{f(m)})^{-\delta}))\}
\]

\[
= \lambda x \{F_f(x, y) - F_f(\frac{x}{f(y)}, y)\} + O(\sum_{\substack{f(m) \leq x \atop P(m) \leq y}} \frac{x}{f(m)}(\log(\frac{ex}{f(m)})^{-\delta})).
\]

Now, we will show that the above error term, is at most
\[
\int_{1/2}^{f(y)} S_f(\frac{x}{t}, y) \frac{dt}{(\log et)^{\delta}}.
\]

Indeed, we have
\[
\int_{1/2}^{f(m)} \frac{dt}{(\log et)^{\delta}} \geq \left(\frac{x}{f(m)} - 1/2\right)(\log(\frac{ex}{f(m)})^{-\delta})
\]

and for \(1 \leq \frac{x}{f(m)} < f(y)\)
\[
\left(\frac{x}{f(m)} - 1/2\right) = \frac{x}{f(m)}(1 - \frac{1/2}{\frac{x}{f(m)}}) \geq \frac{x}{f(m)}(1 - 1/2)
\]
hence
\[\frac{x}{f(m)} \ll \left(\frac{x}{f(m)} - 1/2 \right). \]

Therefore
\[\frac{x}{f(m)} (\log \left(\frac{ex}{f(m)} \right)^{-\delta}) \ll \int_{1/2}^{\tau(m)} \frac{dt}{(\log et)^\delta}. \]

Thus, we get
\[
\sum_{\tau(y) < f(m) \leq x \atop P(m) \leq y} \frac{x}{f(m)} (\log \left(\frac{ex}{f(m)} \right)^{-\delta}) \ll \sum_{\tau(y) < f(m) \leq x \atop P(m) \leq y} \int_{1/2}^{\tau(m)} \frac{dt}{(\log et)^\delta} \ll \int_{1/2}^{f(y)} S_f(x, y) \frac{dt}{(\log et)^\delta},
\]

Using lemma A, the integral above it is, in turn, at most of order
\[
\int_{1/2}^{f(y)} S_f(x, y) \frac{dt}{(\log et)^\delta} \ll x \int_{1/2}^{f(y)} \frac{F_f(x, y)}{t \log \left(\frac{ex}{t} \right) (\log t)^\delta} \ll x \frac{(\log f(y))^\lambda}{(\log f(y))^\delta} \int_{1/2}^{f(y)} \frac{dt}{t (\log et)^\delta}
\ll x \frac{(\log f(y))^\lambda}{(\log f(y))^{1-\delta}} \ll x (\log f(y))^{\lambda-\delta}, \quad v \geq 2.
\]

The main term on the right side of (1.2) is equal to
\[
\lambda A(f) x (\log f(y))^{\lambda \left[j_\lambda(v) - j_{\lambda-1}(v) \right]} + O(x (\log f(y))^{\lambda-\delta} \log v)
\]
(by theorem 1).

Thus, from (1.1), we obtain
\[
(\log cx) S_f(x, y) = \lambda A(f) x (\log f(y))^{\lambda \left[j_\lambda(v) - j_{\lambda-1}(v) \right]} + O(x (\log f(y))^{\lambda-\delta} \log v)
\]

which reduces, after division by \(\log cx \)
\[
S_f(x, y) = A(f) x (\log f(y))^{\lambda-1} \{\rho_\lambda(v) + O(\frac{\log v}{(\log f(y))^\delta})\}; \quad v \geq 2.
\]

Now suppose \(1 < v < 2 \). Again (1.1) becomes by \((\Omega_1) \) and proposition B
\[
S_f(x, y) \log cx = \lambda f(y) S_f(x, y) \left[1 + ((\log f(y))^{-\delta}) + \lambda x [F_f(x, y) - F_f(x, f(y)] \right] + O(x (\log f(y))^\lambda)
\]
\[+ O(\sum_{\tau(y) < f(m) \leq x \atop P(m) \leq y} \frac{x}{f(m)} (\log \left(\frac{x}{f(m)} \right)^{-\delta}) \); \quad v \in [1, 2]. \quad (1.3)\]
We note that the last error term on the right side is at most of the same order as the error term on the right side of (1.2).

Together with theorem 1 and proposition B, we now can deduce from (1.3) that

\[S_f(x, y) \log cx = \lambda A(f)x(\log f(y))^\lambda [j_\lambda(v) - j_\lambda(v - 1)] + O(x(\log f(y))^\lambda - \delta)) ; v \in]1.2] \]

and thus

\[= A(f)x(\log f(y))^\lambda v\rho_\lambda(v) + O(x(\log f(y))^\lambda - \delta)) ; v \in]1.2] \]

(since \(\rho_\lambda(v) = j'_\lambda(v) \)).

After division by \(\log cx \), we get

\[S_f(x, y) = A(f)x(\log f(y))^\lambda - 1[\rho_\lambda(v) + O\left(\frac{\log v}{(\log f(y))^\delta}\right)] ; v \in]1.2]. \]

This proves theorem 2.

References

Received: August, 2012