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Abstract

In this paper by applying a Poincaré transformation to a Van der

Pol equation we obtain a new system that does not have periodic orbits.
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1 Introduction

In [1] was studied the damped Duffing equation and it was applied the Poincaré

transformation. It was used a Gasull`s result [2] to study a van der Pol equa-

tion. In paper [3] was made an analysis of a generalization of a Van der Pol

equation of degree five without periodic orbits in a domain on the plane. In

paper [4] was made a study of a dynamical system on the plane without pe-

riodic orbits in a domain on the plane. Dulac`s criterion [5] gives sufficient

conditions for the non-existence of periodic orbits of dynamical systems in sim-

ply connected regions on the plane. In this paper, we build a Dulac function

for a transformed van der Pol system and prove that there aren`t any periodic

orbit and also we obtain a general transformed van der Pol system without

periodic orbits on the plane.

2 Preliminary Notes

Definition 2.1. The van der Pol equation can be represented by a differen-

tial equation of the form:

x′′ + ε(x2 − 1)x′ + x = 0

which can be written on the following way
ẋ = y

ẏ = −x− ε(x2 − 1)y

(1)

It is well known that the van der Pol system comes from an investigation about

electrical circuits in the vacuum and the solution of this system has periodic

orbits.

3 Main Results

These are the main results of the paper.

Lemma 3.1. The system (1) can be transformed into (3) by applying Poincaré

transformation (2).

Proof. Taking the following substitutions x1 = x and x2 = y and using

Poincaré transformation as follows:

dt

x23
= dτ, x1 =

1

x3
, x2 =

u

x3
, x3 6= 0. (2)
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We obtain the following system
du
dτ

= −x23 − ε(1− x23)u− u2x23

dx3
dτ

= −ux33.
(3)

Theorem 3.2. The system (3) does not have periodic orbits in the domain

0 < x2 < 1 and its Dulac function is (7).

Proof. Now, we take x1 = u and x2 = x3, we obtain
ẋ1 = −x22 − ε(1− x22)x1 − x21x22

ẋ2 = −x1x32.
(4)

So, the solution of (4) has no periodic orbits and the above system satisfies

the Dulac equation

f1
∂h

∂x1
+ f2

∂h

∂x2
= h

[
C(x1, x2)−

(
∂f1
∂x1

+
∂f2
∂x2

)]
, (5)

where

f1 = −x22 − ε(1− x22)x1 − x21x22
f2 = −x1x32

∂f1
∂x1

= −ε(1− x22)− 2x1x
2
2 (6)

∂f2
∂x2

= −3x1x
2
2.

Replacing these values in (5) and supposing
∂h

∂x1
= 0 and C = −ε(1−x22) < 0,

we obtain:

∂h

h
= − 5

x2
∂x2, x2 6= 0.

By integrating on both sides of the equation we have:

h =
1

x52
, x2 > 0. (7)
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Theorem 3.3. Let C1(x1), C2(x2) be functions in C1(R), then the following

system 
ẋ1 = −ε(1− x22)x1 − x21x22 + C2(x2)

ẋ2 = C1(x1)x
5
2 − x1x32

(8)

does not have periodic orbits on the domain 0 < x2 < 1.

Proof. From (7) we have

h−1 = x52 and
∂h

∂x2
= − 5

x62
.

Applying (5) we obtain

∂f2
∂x2
−
(

5

x2

)
f2 = 2x1x

2
2.

Thus, this differential equation has a solution

f2 = C1(x1)x
5
2 − x1x32. (9)

Now, from (6) and integrating on both sides of this equation we have:

f1 = −ε(1− x22)x1 − x21x22 + C2(x2). (10)

Then, from (9) and (10) we obtain the system (8).
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