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Abstract

In this paper by applying a Poincaré transformation to a Van der
Pol equation we obtain a new system that does not have periodic orbits.
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1 Introduction

In [1] was studied the damped Duffing equation and it was applied the Poincaré
transformation. It was used a Gasull's result [2] to study a van der Pol equa-
tion. In paper [3] was made an analysis of a generalization of a Van der Pol
equation of degree five without periodic orbits in a domain on the plane. In
paper [4] was made a study of a dynamical system on the plane without pe-
riodic orbits in a domain on the plane. Dulac's criterion [5] gives sufficient
conditions for the non-existence of periodic orbits of dynamical systems in sim-
ply connected regions on the plane. In this paper, we build a Dulac function
for a transformed van der Pol system and prove that there aren’t any periodic
orbit and also we obtain a general transformed van der Pol system without
periodic orbits on the plane.

2 Preliminary Notes

Definition 2.1. The van der Pol equation can be represented by a differen-
tial equation of the form:

" +e(x? - 1)’ +x=0
which can be written on the following way

=y
(1)

j=—a—ela®— 1)y

It is well known that the van der Pol system comes from an investigation about
electrical circuits in the vacuum and the solution of this system has periodic
orbits.

3 Main Results

These are the main results of the paper.

Lemma 3.1. The system (1) can be transformed into (3) by applying Poincaré
transformation (2).

Proof. Taking the following substitutions z; = z and z, = y and using
Poincaré transformation as follows:
dt 1 U
— =dr, 11 = —, Ty = —, 13 # 0. (2)
x3 T3 T3



Poincaré's map in a Van der Pol equation 2941

We obtain the following system

g—ﬁ = —22 — (1 — 23)u — u?23

) (3)
T _ 3

d_7'3 = —U,TS.

O

Theorem 3.2. The system (3) does not have periodic orbits in the domain
0 < xo < 1 and its Dulac function is (7).

Proof. Now, we take x1 = u and x5 = x3, we obtain

7 = —2 —e(1 — 2z — 2323
(4)
.’13:2 = —:I:lx%.
So, the solution of (4) has no periodic orbits and the above system satisfies
the Dulac equation

oh oh B ofi  0fs
flaxl + f261‘2 - h |:C([L'1,{E2) (81'1 + 81'2):| ) (5)
where
fi=—a3 — (1 = a3)a, — afas
f2 = —371563
of
a_:ci = —¢(1 — 23) — 22122 (6)
of
6_952 == —SIleg

oh
Replacing these values in (5) and supposing Era 0and C' = —¢(1—23) <0,
€1

we obtain:
)
—_-— = ——(9:1:2, i) 7é O
T2
By integrating on both sides of the equation we have:

x5’
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Theorem 3.3. Let Cy(x1), Co(xa) be functions in C*(R), then the following
system
.fl = —6(1 — .T%)l‘l - x%x% + CQ(ZEQ)

(8)
I:Q = C’l(xl)xg - :(:1:16;’

does not have periodic orbits on the domain 0 < xy < 1.
Proof. From (7) we have
oh 5

h™t =25 and — = 5
0xs x5

Applying (5) we obtain

81‘2 i)

% - <i> fo= 2x1x§.
Thus, this differential equation has a solution
fo = Cy(w1)a5 — z123. 9)
Now, from (6) and integrating on both sides of this equation we have:
fi = —e(l —a3)x; — xix3 + Oy(as). (10)
Then, from (9) and (10) we obtain the system (8). O
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