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Abstract

In this paper we construct an asymptotic for resonance of a wave
function associated with the Klein-Gordon equation in presence of a
potential barrier. To achieve this, we reduce the main differential equa-
tion to an integral equation using Green’s function, Fourier transform
and Neumann series.
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1 Introduction

It was constructed an asymptotic for the Klein-Gordon equation [1].
Unbounded states were associated with the wave equation [5]. It was stud-

ied the resonance for scattered waves [4]. It was connected the Fredholm
determinant approach of Froese to the Fourier transform approach of Zworski
[3]. It was studied resonance for water waves [2].

Our goal is to construct an asymptotic of an unbounded solution of the
Klein-Gordon equation perturbed by a potential barrier V (x) ∈ C∞0 (R). The
antibound state (it is known as a resonance) is related with a potential that
satisfies

∫∞
−∞ V (x)dx > 0.

2 Preliminary Notes

We study the continuous Klein-Gordon equation

Ψtt −4Ψ +m2Ψ + εV (x)Ψ = 0, m > 0, ε→ 0.

Now, we are looking for the solution that satisfies the definition (2.1) in
the form Ψ = eiwtϕ(x), where w is the frequency, we obtain

−ϕxx(x) +m2ϕ(x) + εV (x)ϕ(x) = λϕ(x), λ = w2, (1)

where V (x) = 0 for x > r and x < −r with r sufficiently large. The
continuous spectrum of equation (1) coincides with the continuous spectrum
of the unperturbed equation when ε = 0 and it is given by [m2,∞).

Definition 2.1. A solution ϕ(x) of equation (1) is called a resonance if ϕ
satisfies

ϕ(x) ∝ eβ|x| |x| → ∞ (2)

with β > 0 and λ = m2 − β2.

3 Main Result

The main result is as follows

Theorem 3.1. Let
∫∞
−∞ V (x)dx > 0. Then for ε sufficiently small, the equa-

tion (1) has a resonance for λ = m2 − β2, where

β =
ε

2
Ṽ (0) +O(ε2). (3)
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Proof. We consider the problem (1) and taking λ = m2 − β2 we obtain

−ϕxx(x) + β2ϕ(x) = −εV (x)ϕ(x).

We define L = − d2

dx2
+ β2 and g(x) = −εV (x)ϕ(x). Using Green’s functions

L(G(x, ξ)) = δ(x− ξ), where G(x− ξ) = 1
2β
e−β|x−ξ| [1]. Thus, the solution for

Lϕ = g is given by ϕ = G ∗ g, where g has compact support. Now, we are
looking for the solution of problem (1)

ϕ(x) = [G ∗ (−εV ϕ)](x),

applying Fourier transform

ϕ̃(p) =
−ε

p2 + β2
Ṽ ϕ(p), (4)

where G̃(p) = 1
p2+β2

(p2 + β2)ϕ̃(p) = Ã(p). (5)

We know that outside the support of V (x), |x| > r , ϕ(x) = A1e
−βx+A2e

βx.
So the sought solution is of the form

ϕ(x) =
1

2π

∫ ∞
−∞

eipx
Ã(p)

p2 + β2
dp+ A1e

−βx + A2e
βx, (6)

for |x| → ∞. To study the behavior of (6), we define the following contours
around the simple poles

D+ = {|x| ≥ 1, y = 0} ∪ {x+ iy : x2 + y2 = 1, y > 0}

D− = {|x| ≥ 1, y = 0} ∪ {x+ iy : x2 + y2 = 1, y < 0}.

Applying the Cauchy residue theorem to (6), we have

ϕ(x) =
1

2π

∫
D+

eipx
Ã(p)

p2 + β2
dp+

(
Ã(iβ)

2β
+ A1

)
e−βx + A2e

βx, (7)

for x > 0. Considering the right hand side of (7) and A1 = − Ã(iβ)
2β

, we have

ϕ(x) = A2e
βx +

1

2π
e−x

∫
D+−{i}

eipÃ(p+ i)

(p+ i)2 + β2
dp.

So, ϕ(x) = A2e
βx +O(e−x), when x→∞.
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Analogously, ϕ(x) = A1e
−βx +O(ex), when x→ −∞ and A2 = − Ã(−iβ)

2β
.

Therefore,

ϕ(x) =
1

2π

∫ ∞
−∞

eipx
Ã(p)

p2 + β2
dp− Ã(iβ)

2β
e−βx − Ã(−iβ)

2β
eβx. (8)

The Fourier transform of (8) has the form

ϕ̃(p) =
Ã(p)

p2 + β2
+ 2πA1δ(p− iβ) + 2πA2δ(p+ iβ). (9)

Substituting (9) into (4), we obtain

Ã(p) = − ε

2π

∫ ∞
−∞

Ṽ (p− ξ) Ã(ξ)

ξ2 + β2
dξ − εA1Ṽ (p− iβ)− εA2Ṽ (p+ iβ). (10)

Applying the Cauchy residue theorem to the equation (10), we obtain

Ã(p) = − ε

2π

∫
D+

Ṽ (p− ξ) Ã(ξ)

ξ2 + β2
dξ + ε

(
A(−iβ)

2β

)
Ṽ (p+ iβ). (11)

We define Ω as the set of bounded analytic functions on B1 = {z ∈
C, |=z| < 1}, with the norm ‖ ϕ ‖= supz∈B1|ϕ(z)|, and the operator Tβ :
Ω→ Ω by

[TβÃ(ξ)](p) =

∫
D+

Ṽ (p− ξ) Ã(ξ)

ξ2 + β2
dξ, p ∈ Ω. (12)

We can rewrite the equation (11)

[(1 + εTβ)Ã(ξ)](p) = ε

(
Ã(−iβ)

2β

)
Ṽ (p+ iβ). (13)

Since the operator Tβ is bounded, therefore εTβ is small, it corresponds to
a contraction operator then we can take its inverse, thus:

Ã(p) = ε

(
Ã(−iβ)

2β

)
[(1 + εTβ)ξ→p]

−1Ṽ (ξ + iβ), (14)

where 1 is the identity operator.
Rewriting (14) in terms of the Neumann series

Ã(p) = ε

(
Ã(−iβ)

2β

)
∞∑
n=0

(−1)nεn[T nβ Ṽ (ξ + iβ)](p). (15)
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Now, let us evaluate (15) at p = −iβ, we obtain

1 =
1

2β

∞∑
n=0

(−1)nεn+1[T nβ Ṽ (ξ + iβ)](−iβ). (16)

Taking the main term of (16)

1 =
ε

2β
Ṽ (ξ + iβ)|ξ=−iβ +O(ε2).

Multiplying by β, we obtain (3).
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