Stability of an n-Dimensional Functional Equation Related to Quadratic-Additive Mappings in Fuzzy Normed Spaces

Sun Sook Jin
Department of Mathematics Education
Gongju National University of Education
Gongju 314-711, Republic of Korea

Yang-Hi Lee
Department of Mathematics Education
Gongju National University of Education
Gongju 314-711, Republic of Korea

Copyright © 2015 Sun-Sook Jin and Yang-Hi Lee. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we investigate a fuzzy version of stability for the functional equation

$$\sum_{i=1}^{n} f \left(x_i - \frac{1}{n} \sum_{j=1}^{n} x_j \right) - \sum_{i=1}^{n} f(x_i) + nf \left(\frac{1}{n} \sum_{j=1}^{n} x_j \right) = 0$$

whose solutions are quadratic-additive mappings, in the sense of A. K. Mirmostafaei and M. S. Moslehian.

Mathematics Subject Classification: 46S40, 39B52

Keywords: Fuzzy normed space, quadratic-additive mapping, stability of a functional equation
1 Introduction and preliminaries

In 1984, A. K. Katsaras [12] defined a fuzzy norm on a linear space to construct a fuzzy structure on the space. Since then, some mathematicians have introduced several types of fuzzy norm in different points of view. In 2003, T. Bag and S.K. Samanta [2] gave a new definition of a fuzzy norm to exhibit a reasonable fuzzy version of stability for functional equations by following:

Definition 1.1 ([2]) Let X be a real linear space. A function $N : X \times \mathbb{R} \rightarrow [0, 1]$ (the so-called fuzzy subset) is said to be a fuzzy norm on X if for all $x, y \in X$ and all $s, t \in \mathbb{R}$,

(N1) $N(x, c) = 0$ for $c \leq 0$;
(N2) $x = 0$ if and only if $N(x, c) = 1$ for all $c > 0$;
(N3) $N(cx, t) = N(x, t/|c|)$ if $c \neq 0$;
(N4) $N(x + y, s + t) \geq \min \{N(x, s), N(y, t)\}$;
(N5) $N(x, \cdot)$ is a non-decreasing function on \mathbb{R} and $\lim_{t \to \infty} N(x, t) = 1$.

A classical stability problem of the functional equation was formulated by S. M. Ulam [24] in 1940. In the next year, D. H. Hyers [5] gave a partial solution of Ulam’s problem. Subsequently, his result was generalized by T. Aoki [1] and Th. M. Rassias [22], and then the stability problems of functional equations have been extensively investigated by a number of mathematicians, see [3, 4, 11, 14, 15, 16, 23].

$$f(x + y) - f(x) - f(y) = 0$$ (1)

and the quadratic functional equation:

$$f(x + y) + f(x - y) - 2f(x) - 2f(y) = 0$$ (2)

where every solution of (1) is called an additive mapping and every solution of (2) is called a quadratic mapping. On the other hand if a mapping is represented by sum of an additive mapping and a quadratic mapping, we call the mapping a quadratic-additive mapping.

In this paper, we get a stability result of the following n-dimensional functional equation

$$\sum_{i=1}^{n} f \left(x_i - \frac{1}{n} \sum_{j=1}^{n} x_j \right) - \sum_{i=1}^{n} f(x_i) + nf \left(\frac{1}{n} \sum_{j=1}^{n} x_j \right) = 0$$ (3)

in the fuzzy normed linear spaces.
In 2008, C.-G. Park et al [21] showed that every solution of (3) is a quadratic-additive mapping. In 2011, Z. Wang et al [25] obtained a stability of the functional equation (3) in fuzzy spaces. In their study [25] of stability problem of (3), they attempted to get stability theorems to take the desired approximate solution by handling the odd and even part of \(f \), respectively. In this paper, however, we can take the desired approximate solution at once. Therefore, this idea is a refinement with respect to the simplicity of the proof. Using the similar method, the authors and S.-M. Jung showed the stability of various kinds of functional equations related to quadratic-additive mappings in fuzzy spaces, see [6, 7, 8, 9, 18].

2 Stability of the functional equation (3)

We use the definition of a fuzzy normed space given in [2] to exhibit a reasonable fuzzy version of stability for the \(n \)-dimensional functional equation (3) in the fuzzy normed linear space.

Let \((X, N)\) be a fuzzy normed linear space. Let \(\{x_n\}\) be a sequence in \(X\). Then \(\{x_n\}\) is said to be convergent if there exists \(x \in X\) such that \(\lim_{n \to \infty} N(x_n - x, t) = 1\) for all \(t > 0\). In this case, \(x\) is called the limit of the sequence \(\{x_n\}\) and we denote it by \(N \lim_{n \to \infty} x_n = x\). A sequence \(\{x_n\}\) in \(X\) is called Cauchy if for each \(\varepsilon > 0\) and each \(t > 0\) there exists \(n_0\) such that for all \(n \geq n_0\) and all \(p > 0\) we have \(N(x_n + p - x_n, t) > 1 - \varepsilon\). It is known that every convergent sequence in a fuzzy normed space is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy normed space is called a fuzzy Banach space.

Throughout this section, let \((X, N)\) be a fuzzy normed linear space and \((Y, N')\) a fuzzy Banach space. And let \(n\) be a fixed natural number greater than 2. For a given mapping \(f : X \to Y\), we use the abbreviations

\[
Df(x_1, x_2, \cdots, x_n) := \sum_{i=1}^{n} f \left(x_i - \frac{1}{n} \sum_{j=1}^{n} x_j \right) - \sum_{i=1}^{n} f(x_i) + nf \left(\frac{1}{n} \sum_{j=1}^{n} x_j \right)
\]

for all \(x_1, x_2, \cdots, x_n \in X\) and

\[
\Delta(x) := (2x, 2x, -x, x, \cdots, x)
\]

for all \(x \in X\).

Lemma 2.1 (Lemma 2.1 in [21]) Let \(V\) and \(W\) be real vector spaces. If a mapping \(f : V \to W\) satisfies

\[
Df(x_1, \cdots, x_n) = 0
\]
for all \(x_1, \cdots, x_n \in V \), then the mapping \(f : V \to W \) satisfies
\[
2f\left(\frac{x+y}{2}\right) + f\left(\frac{x-y}{2}\right) + f\left(\frac{y-x}{2}\right) = f(x) + f(y)
\] (4)
for all \(x, y \in V \).

It is easy to show that every solution of the functional equation (4) is a quadratic-additive mapping. Hence, by Lemma 2.1, every solution of the functional equation \(Df(x_1, \cdots, x_n) = 0 \) is a quadratic-additive mapping.

For given \(q > 0 \), the mapping \(f \) is called a fuzzy \(q \)-almost quadratic-additive mapping if
\[
N'(Df(x_1, \cdots, x_n), t_1 + \cdots + t_n) \geq \min\{N(x_1, t_1^q), \cdots, N(x_n, t_n^q)\}
\] (5)
for all \(x_1, x_2, \cdots, x_n \in X \) and \(t_1, t_2, \cdots, t_n \in (0, \infty) \). The following result gives a fuzzy version of the stability of the functional equation (3).

Theorem 2.2 Let \(q \) be a positive real number with \(q \neq \frac{1}{2}, 1 \). And let \(f \) be a fuzzy \(q \)-almost quadratic-additive mapping from a fuzzy normed space \((X, N) \) into a fuzzy Banach space \((Y, N') \). Then there is a unique quadratic-additive mapping \(F : X \to Y \) such that
\[
N'(F(x)-f(x), t) \geq \begin{cases}
\sup_{t' < t} N\left(x, \frac{t'^q}{2^{(2p-4)t'q}}\right) & \text{if } q > \frac{1}{2}, q \neq 1 \\
\sup_{t' < t} N\left(x, \frac{(2^p-4)t'q}{2^{nq}}\right) & \text{if } 0 < q < \frac{1}{2}
\end{cases}
\] (6)
for each \(x \in X \) and \(t > 0 \), where \(p = 1/q \).

Proof. It follows from (N2), (N3), (N4) and (5) that
\[
N'(f(0), t) = N'(Df(0, \cdots, 0), nt) \geq N(0, t^q) = 1
\]
for all \(t > 0 \). So, by (N2), we know that \(f(0) = 0 \). We will prove the theorem in three cases, \(q > 1, \frac{1}{2} < q < 1 \), and \(0 < q < \frac{1}{2} \).

Case 1. Let \(q > 1 \) and let \(J_mf : X \to Y \) be a mapping defined by
\[
J_mf(x) := 2^{-2m-1}(f(2^m x) + f(-2^m x)) + 2^{-m-1}(f(2^m x) - f(-2^m x))
\]
for all \(x \in X \) and \(m \in \mathbb{N} \). Then \(J_0f(x) = f(x) \) and
\[
J_jf(x) - J_{j+1}f(x) = \frac{Df(\Delta(2^j x))}{2 \cdot 4^{j+1}} + \frac{Df(\Delta(-2^j x))}{2 \cdot 4^{j+1}} + \frac{Df(\Delta(2^j x))}{3 \cdot 2^{j+2}} - \frac{Df(\Delta(-2^j x))}{3 \cdot 2^{j+2}}
\] (7)
for all \(x \in X \) and \(j \geq 0 \). Together with (N3), (N4) and (5), this equation implies that if \(m' + m > m \geq 0 \) then

\[
N'(J_m f(x) - J_{m'+m} f(x), \sum_{j=m}^{m'+m-1} \left(\frac{1}{4} \left(\frac{2^p}{4} \right)^j + \frac{1}{6} \left(\frac{2^p}{2} \right)^j \right) n \tilde{t}^p) \\
\geq N' \left(\sum_{j=m}^{m'+m-1} (J_j f(x) - J_{j+1} f(x)), \sum_{j=m}^{m'+m-1} \left(\frac{1}{4} \left(\frac{2^p}{4} \right)^j + \frac{1}{6} \left(\frac{2^p}{2} \right)^j \right) n \tilde{t}^p \right) \\
\geq \min \bigcup_{j=m}^{m'+m-1} \left\{ N' \left(J_j f(x) - J_{j+1} f(x), \left(\frac{1}{4} \left(\frac{2^p}{4} \right)^j + \frac{1}{6} \left(\frac{2^p}{2} \right)^j \right) n \tilde{t}^p \right) \right\} \\
\geq \min \bigcup_{j=m}^{m'+m-1} \left\{ \min \left\{ N' \left(\frac{D f(\Delta(2^j x))}{2 \cdot 4^{j+1}}, \frac{2^j n \tilde{t}^p}{2 \cdot 4^{j+1}} \right), N' \left(\frac{D f(\Delta(2^j x))}{3 \cdot 2^{j+2}}, \frac{2^j n \tilde{t}^p}{3 \cdot 2^{j+2}} \right) \right\} \right\} \\
\geq \min \bigcup_{j=m}^{m'+m-1} \left\{ N(2^j x, 2^j t), N(2^{j+1} x, 2^j t) \right\} \\
= N \left(x, \frac{\tilde{t}}{2} \right) \\
= N(2^j x, 2^j t), N(2^{j+1} x, 2^j t) \\
= N \left(x, \frac{\tilde{t}}{2} \right)
\]

for all \(x \in X \) and \(t > 0 \). Let \(\varepsilon > 0 \) be given. Since \(\lim_{t \to \infty} N(x, t) = 1 \), there is \(t_0 > 0 \) such that

\[
N(x, t_0) \geq 1 - \varepsilon.
\]

Observe that for some \(\frac{\tilde{t}}{2} > t_0 \), the series \(\sum_{j=0}^{\infty} \left(\frac{1}{4} \left(\frac{2^p}{4} \right)^j + \frac{1}{6} \left(\frac{2^p}{2} \right)^j \right) n \tilde{t}^p \) converges for \(p = 1/q < 1 \). It guarantees that, for an arbitrary given \(c > 0 \), there exists \(m_0 \geq 0 \) such that

\[
\sum_{j=m}^{m'+m-1} \left(\frac{1}{4} \left(\frac{2^p}{4} \right)^j + \frac{1}{6} \left(\frac{2^p}{2} \right)^j \right) n \tilde{t}^p < c
\]

for each \(m \geq m_0 \) and \(m' > 0 \). By (N5) and (8), we have

\[
N'(J_m f(x) - J_{m'+m} f(x), c) \\
\geq N' \left(J_m f(x) - J_{m'+m} f(x), \sum_{j=m}^{m'+m-1} \left(\frac{1}{4} \left(\frac{2^p}{4} \right)^j + \frac{1}{6} \left(\frac{2^p}{2} \right)^j \right) n \tilde{t}^p \right) \\
\geq N \left(x, \frac{\tilde{t}}{2} \right) \geq N(x, t_0) \geq 1 - \varepsilon
\]
for all $x \in X$. Hence $\{J_m f(x)\}$ is a Cauchy sequence in the fuzzy Banach space (Y, N'), and so we can define a mapping $F : X \to Y$ by

$$F(x) := N' - \lim_{m \to \infty} J_m f(x)$$

for all $x \in X$. Moreover, if we put $m = 0$ in (8), we have

$$N'(f(x) - J_m f(x), t) \geq N\left(x, \frac{t^q}{2 \left(\sum_{j=0}^{n'} 1 \left(\frac{2^p}{4}\right)^j + \frac{1}{6} \left(\frac{2^p}{2}\right) n\right)^q}\right)$$

(9)

for all $x \in X$. Next we will show that F is a quadratic-additive mapping. Using (N4), we have

$$N'(DF(x_1, \ldots, x_n), t)$$

$$\geq \min \left\{ N\left(\sum_{i=1}^{n} (F - J_m f)\left(x_i - \sum_{j=1}^{n} \frac{x_j}{n}\right), \frac{t}{4n}\right) \right\},$$

$$\min \left\{ N'(F - J_m f)\left(x_i, \frac{t}{4n}\right), N'(DJ_m f(x_1, \ldots, x_n), \frac{t}{4}\right\}$$

(10)

for all $x_1, \ldots, x_n \in X$ and $m \in N$. The first three terms on the right hand side of (10) tend to 1 as $m \to \infty$ by the definition of F and (N2), and the last term holds

$$N'(DJ_m f(x_1, x_2, \ldots, x_n), \frac{t}{4})$$

$$\geq \min \left\{ N'(Df(2^m x_1, \ldots, 2^m x_n), \frac{t}{16}), N'(Df(-2^m x_1, \ldots, -2^m x_n), \frac{t}{16}) \right\},$$

$$N'(Df(2^m x_1, \ldots, 2^m x_n), \frac{t}{16}), N'(Df(-2^m x_1, \ldots, -2^m x_n), \frac{t}{16}) \right\}$$

for all $x_1, x_2, \ldots, x_n \in X$ and $t > 0$. By (N3) and (5), we obtain

$$N'(Df(\pm 2^m x_1, \ldots, \pm 2^m x_n), \frac{t}{16})$$

$$\geq \min \left\{ N\left(x_1, 2^{(2q-1)m-3q} n^{-q} t\right), \ldots, N\left(x_n, 2^{(2q-1)m-3q} n^{-q} t\right) \right\}$$

and

$$N'(Df(\pm 2^m x_1, \ldots, \pm 2^m x_n), \frac{t}{16})$$

$$\geq \min \left\{ N\left(x_1, 2^{(q-1)m-3q} n^{-q} t\right), \ldots, N\left(x_n, 2^{(q-1)m-3q} n^{-q} t\right) \right\}$$
for all $x_1, \ldots, x_n \in X$ and $m \in \mathbb{N}$. Since $q > 1$, together with (N5), we can deduce that the last term of (10) also tends to 1 as $m \to \infty$. It follows from (10) that

$$N'(DF(x_1, x_2, \ldots, x_n), t) = 1$$

for all $x_1, x_2, \ldots, x_n \in X$ and $t > 0$. By (N2), we have $DF(x_1, x_2, \ldots, x_n) = 0$ for all $x_1, x_2, \ldots, x_n \in X$. Now we approximate the difference between f and F in a fuzzy sense. For an arbitrary fixed $x \in X$ and $t > 0$, choose $0 < \varepsilon < 1$ and $0 < t' < t$. Since F is the limit of $\{J_m(f)\}$, there is $m \in \mathbb{N}$ such that

$$N'(F(x) - J_m f(x), t - t') \geq 1 - \varepsilon.$$

By (9), we have

$$N'(F(x) - f(x), t) \geq \min \left\{ N'(F(x) - J_m f(x), t - t') , N'(J_m f(x) - f(x), t') \right\}$$

$$\geq \min \left\{ 1 - \varepsilon, N \left(x, \frac{t^q}{2 \left(\sum_{j=0}^{m-1} \left(\frac{1}{4} \left(\frac{2^j}{4} \right)^j \frac{1}{4} \left(\frac{2^j}{4} \right)^j \left(\frac{n}{2-2^j} \right) q \right) \right) \right) \right\}$$

Because $0 < \varepsilon < 1$ is arbitrary, we get the inequality (6) in this case. Finally, to prove the uniqueness of F, let $F' : X \to Y$ be another quadratic-additive mapping satisfying (6). Since $F' : X \to Y$ is a quadratic-additive mapping, F' satisfies the equality

$$F'(x) = J_m F'(x)$$

for all $x \in X$ and $m \in \mathbb{N}$. Together with (N4) and (6), this implies that

$$\begin{align*}
N'(F'(x) - J_m f(x), t) & = N'(J_m F'(x) - J_m f(x), t) \\
& \geq \min \left\{ N' \left(\frac{(F' - f)(2^m x)}{2 \cdot 4^m} , t \right) , N' \left(\frac{(F' - f)(-2^m x)}{2 \cdot 4^m} , t \right) \right\} \\
& \geq \sup_{t' < t} N \left(x, 2^{(q-1)m-q} \left(\frac{t'^q}{2 \left(\frac{n}{4-2^j} + \frac{n}{3(2-2^j)} \right) q} \right) \right)
\end{align*}$$

for all $x \in X$ and $m \in \mathbb{N}$. Observe that, for $q = \frac{1}{p}$, the last term of the above inequality tends to 1 as $m \to \infty$ by (N5). $F'(x) = N' - \lim_{m \to \infty} J_m f(x)$ and so we get

$$F(x) = F'(x)$$
for all \(x \in X \).

Case 2. Let \(\frac{1}{2} < q < 1 \) and let \(J_{m}f : X \to Y \) be a mapping defined by

\[
J_{m}f(x) := 2^{-2m-1}(f(2^{m}x) + f(-2^{m}x)) + 2^{m-1}\left(f\left(\frac{x}{2^{m}}\right) - f\left(-\frac{x}{2^{m}}\right)\right)
\]

for all \(x \in X \). Then we have \(J_{0}f(x) = f(x) \) and

\[
J_{j}f(x) - J_{j+1}f(x) = \frac{Df(\Delta(2^{j}x))}{2 \cdot 4^{j+1}} + \frac{Df(\Delta(-2^{j}x))}{2 \cdot 4^{j+1}}
\]

\[
- \frac{2^{j-1}Df(\Delta(x_{2j+1}))}{3} + \frac{2^{j-1}Df(\Delta(-x_{2j+1}))}{3}
\]

for all \(x \in X \) and \(j \geq 0 \). If \(m' + m > m \geq 0 \), then

\[
N'(J_{m}f(x) - J_{m'+m}f(x), \sum_{j=m}^{m'+m-1} \left(\frac{1}{4} \left(\frac{2^{p}}{4}\right)^{j} + \frac{1}{3 \cdot 2^{p}} \left(\frac{2}{2^{p}}\right)^{j}\right) nt^{p})
\]

\[
\geq N'\left(\sum_{j=m}^{m'+m-1} (J_{j}f(x) - J_{j+1}f(x)), \sum_{j=m}^{n+m-1} \left(\frac{1}{4} \left(\frac{2^{p}}{4}\right)^{j} + \frac{1}{3 \cdot 2^{p}} \left(\frac{2}{2^{p}}\right)^{j}\right) nt^{p}\right)
\]

\[
\geq \min \bigcup_{j=m}^{m'+m-1} \left\{ N'\left(J_{j}f(x) - J_{j+1}f(x), \left(\frac{1}{4} \left(\frac{2^{p}}{4}\right)^{j} + \frac{1}{3 \cdot 2^{p}} \left(\frac{2}{2^{p}}\right)^{j}\right) nt^{p}\right)\right\}
\]

\[
\geq \min \bigcup_{j=m}^{m'+m-1} \left\{ \min \left\{ N'\left(\frac{Df(\Delta(2^{j}x))}{2 \cdot 4^{j+1}}, \frac{2^{j}nt^{p}}{2 \cdot 4^{j+1}}\right), N'\left(\frac{Df(\Delta(-2^{j}x))}{2 \cdot 4^{j+1}}, \frac{2^{j}nt^{p}}{2 \cdot 4^{j+1}}\right), N'\left(\frac{2^{j-1}Df(\Delta(x_{2j+1}))}{3}, \frac{2^{j-1}nt^{p}}{3 \cdot 2^{j+1}}\right)\right\}\right\}
\]

\[
\geq \min \bigcup_{j=m}^{m'+m-1} \left\{ N(2^{j}x, 2^{j}t), N(2^{j+1}x, 2^{j}t), N\left(\frac{x}{2^{j+1}}, \frac{t}{2^{j+1}}\right), N\left(\frac{x}{2^{j}}, \frac{t}{2^{j+1}}\right)\right\}
\]

\[
= N\left(\frac{x}{2}, \frac{t}{2}\right)
\]

for all \(x \in X \) and \(t > 0 \). In the similar argument following (6) of the previous case, we can define the limit \(F(x) := N' - \lim_{m \to \infty} J_{m}f(x) \) of the Cauchy sequence \(\{J_{m}f(x)\} \) in the Banach fuzzy space \(Y \). Moreover, putting \(m = 0 \) in the above inequality, we have

\[
N'(f(x) - J_{m'}f(x), t) \geq N\left(x, \frac{t^{q}}{2 \left(\sum_{j=0}^{m'-1} \left(\frac{1}{4} \left(\frac{2^{p}}{4}\right)^{j} + \frac{1}{3 \cdot 2^{p}} \left(\frac{2}{2^{p}}\right)^{j}\right) n^{q}\right)\right)
\]
for each \(x \in X \). To prove that \(F \) is a quadratic additive mapping, we have enough to show that the last term of (10) in Case 1 tends to 1 as \(m \to \infty \). By (N3) and (5), we get

\[
N'(DJ_m f(x_1, x_2, \ldots, x_n), \frac{t}{4}) \\
\geq \min \left\{ N' \left(\frac{Df (2^m x_1, \ldots, 2^m x_n)}{2 \cdot 4^m}, \frac{t}{16} \right), N' \left(\frac{Df (-2^m x_1, \ldots, -2^m x_n)}{2 \cdot 4^m}, \frac{t}{16} \right), N' \left(\frac{2^{m-1} Df (\frac{x_1}{2^m}, \ldots, \frac{x_n}{2^m})}{2 \cdot 4^m}, \frac{t}{16} \right), N' \left(\frac{-2^{m-1} Df (-\frac{x_1}{2^m}, \ldots, -\frac{x_n}{2^m})}{2 \cdot 4^m}, \frac{t}{16} \right) \right\}
\]

for all \(x_1, x_2, \ldots, x_n \in X \) and \(t > 0 \). Observe that all the terms on the right hand side of the above inequality tend to 1 as \(m \to \infty \), since \(\frac{1}{2} < q < 1 \). Hence, together with the similar argument after (10), we can say that \(DF(x_1, x_2, \ldots, x_n) = 0 \) for all \(x_1, x_2, \ldots, x_n \in X \). Recall, in Case 1, the inequality (6) follows from (9). By the same reasoning, we get (6) from (11) in this case. Now to prove the uniqueness of \(F \), let \(F' \) be another quadratic additive mapping satisfying (6). Then, together with (N4) and (6), we have

\[
N'(F'(x) - J_m f(x), t) \\
= N'(J_m F'(x) - J_m f(x), t) \\
\geq \min \left\{ N' \left(\frac{(F' - f)(2^m x)}{2 \cdot 4^m}, \frac{t}{4} \right), N' \left(\frac{(F' - f)(-2^m x)}{2 \cdot 4^m}, \frac{t}{4} \right), N' \left(\frac{2^{m-1}(F' - f)(\frac{x}{2^m})}{2 \cdot 4^m}, \frac{t}{4} \right), N' \left(\frac{-2^{m-1}(F' - f)(-\frac{x}{2^m})}{2 \cdot 4^m}, \frac{t}{4} \right) \right\} \\
\geq \min \left\{ \sup_{t < t} N \left(x, \frac{2(2q-1)m-q t^q}{2(\frac{n}{4} - 2^{q-1} m + \frac{n}{3(2^{q-1} m - q)} t^q)} \right), \sup_{t < t} N \left(x, \frac{2(1-q)m-q t^q}{2(\frac{n}{4} - 2^{q-1} m + \frac{n}{3(2^{q-1} m - q)} t^q)} \right) \right\}
\]

for all \(x \in X \) and \(m \in \mathbb{N} \). Since \(\lim_{m \to \infty} 2^{(2q-1)m-q} = \lim_{m \to \infty} 2^{(1-q)m-q} = \infty \) in this case, both terms on the right hand side of the above inequality tend to 1 as \(m \to \infty \) by (N5). This implies that \(F'(x) = N' - \lim_{m \to \infty} J_m f(x) \) and so \(F(x) = F'(x) \) for all \(x \in X \).

Case 3. Finally, we take \(0 < q < \frac{1}{2} \) and define \(J_m f : X \to Y \) by

\[
J_m f(x) := \frac{1}{2} \left(4^m (f(2^{-m} x) + f(-2^{-m} x)) + 2^m (f(2^{-m} x) - f(-2^{-m} x)) \right)
\]
for all $x \in X$. Then we have $J_0f(x) = f(x)$ and
\[
J_jf(x) - J_{j+1}f(x) = -2 \cdot 4^j Df \left(\Delta \left(\frac{x}{2^{j+1}} \right) \right) - 2 \cdot 4^{j+1} Df \left(\Delta \left(-\frac{x}{2^{j+1}} \right) \right)
\]
which implies that if $m' + m > m \geq 0$ then
\[
N' \left(J_m f(x) - J_{m'} f(x), \sum_{j=m}^{m'+m-1} \frac{1}{2^m} \left(\frac{4}{2^p} \right)^j nt^p \right)
\]
\[
\geq \min \left\{ \sum_{j=m}^{m'+m-1} \min \left\{ N' \left(\frac{3 \cdot 4^j + 2j}{6} Df \left(\Delta \left(\frac{x}{2^j+1} \right) \right), \frac{3 \cdot 4^j + 2j}{6} nt^p \right) \right\}, \left(x, \frac{t}{2^j+1} \right), N' \left(\frac{x}{2^j+1}, \frac{t}{2^j+1} \right) \right\}
\]
\[
= N \left(x, \frac{t}{2^j+1} \right)
\]
for all $x \in X$ and $t > 0$. Similar to the previous cases, it leads us to define the mapping $F : X \to Y$ by $F(x) := N' - \lim_{m \to \infty} J_m f(x)$. Putting $m = 0$ in the above inequality, we have
\[
N'(f(x) - J_m f(x), t) \geq N \left(x, \frac{t^q}{2 \left(n \sum_{j=0}^{m'-1} \frac{1}{2^p} \left(\frac{4}{2^p} \right)^j \right)^q} \right)
\]
(12)
for all $x \in X$ and $t > 0$. Notice that
\[
N' \left(DJ_m f(x_1, x_2, \ldots, x_n), \frac{t}{4} \right)
\]
\[
\geq \min \left\{ N' \left(4^m Df \left(\frac{x_1}{2}, \ldots, \frac{x_n}{2m} \right), \frac{t}{16} \right), N' \left(4^m Df \left(-\frac{x_1}{2}, \ldots, -\frac{x_n}{2m} \right), \frac{t}{16} \right), \right. \right.
\]
\]
\[
N' \left(2^{m-1} Df \left(\frac{x_1}{2^m}, \ldots, \frac{x_n}{2^m} \right), \frac{t}{16} \right), \right. \right.
\]
\[
N' \left(-2^{m-1} Df \left(-\frac{x_1}{2^m}, \ldots, -\frac{x_n}{2^m} \right), \frac{t}{16} \right) \right\}
\]
\[
\geq \min \left\{ N \left(x_1, 2^{1-2q} m^{-3q} n^{-1} t^q \right), \ldots, N \left(x_n, 2^{1-2q} m^{-3q} n^{-1} t^q \right), \right. \right.
\]
\[
N \left(x_1, 2^{1-q} m^{-3q} n^{-1} t^q \right), \ldots, N \left(x_n, 2^{1-q} m^{-3q} n^{-1} t^q \right) \right\}
for all $x_1, x_2, \ldots, x_n \in X$ and $t > 0$. Since $0 < q < \frac{1}{2}$, all terms on the right hand side tend to 1 as $m \to \infty$, which implies that the last term of (10) tends to 1 as $m \to \infty$. Therefore, we can say that $DF \equiv 0$. Moreover, using the similar argument after (10) in Case 1, we get the inequality (6) from (12) in this case.

To prove the uniqueness of F, let $F' : X \to Y$ be another quadratic additive function satisfying (6). Then together with (N4) and (6), we get

$$N'(F'(x) - J_m f(x), t) \geq \min \left\{ N' \left(\frac{4^m}{2} (F' - f) \left(\frac{x}{2^m} \right), \frac{t}{4} \right), N' \left(\frac{4^m}{2} (F' - f) \left(\frac{-x}{2^m} \right), \frac{t}{4} \right), N' \left(2^{m-1} (F' - f) \left(\frac{x}{2^m} \right), \frac{t}{4} \right), N' \left(2^{m-1} (F' - f) \left(\frac{-x}{2^m} \right), \frac{t}{4} \right) \right\} \geq \sup_{t' < t} N \left(x, \frac{2(1-2q)m-q(2p-4)pt'}{2 \cdot n^q} \right)$$

for all $x \in X$ and $m \in \mathbb{N}$. Since $q < \frac{1}{2}$, the last term tends to 1 as $m \to \infty$ by (N5). This implies that $F'(x) = N' - \lim_{m \to \infty} J_m f(x)$ and so $F(x) = F'(x)$ for all $x \in X$. It completes the proof of Theorem 2.2.

We can use Theorem 2.2 to get a classical result in the framework of normed spaces. Let $(X, \| \cdot \|)$ be a normed linear space. Suppose that $f : X \to Y$ is a mapping into a Banach space $(Y, ||| \cdot |||)$ such that

$$|||Df(x_1, x_2, \ldots, x_n)||| \leq \|x_1\|^p + \|x_2\|^p + \cdots + \|x_n\|^p$$

for all $x_1, x_2, \ldots, x_n \in X$, where $p > 0$ and $p \neq 1, 2$. Then the inequality

$$N_Y(Df(x_1, \ldots, x_n, t_1 + \cdots + t_n) \geq \min \{N_X(x_1, t_1^q), \ldots, N_X(x_n, t_n^q)\}$$

holds for $q = \frac{1}{p}$, where N_X and N_Y are fuzzy norms defined by

$$N_X(x, t) = \begin{cases} 0, & t \leq \|x\|, \\ 1, & t > \|x\| \end{cases} \quad \text{and} \quad N_Y(y, t) = \begin{cases} 0, & t \leq |||y|||, \\ 1, & t > |||y||| \end{cases}$$

for all $x \in X$, $y \in Y$, and $t \in \mathbb{R}$, see [18]. It means that f is a fuzzy q-almost quadratic additive mapping, and by Theorem 2.2, we get the following stability result.

Corollary 2.3 Let $(X, \| \cdot \|)$ be a normed linear space and let $(Y, ||| \cdot |||)$ be a Banach space. If n is a natural number greater than 2 and $f : X \to Y$ satisfies

$$|||Df(x_1, x_2, \ldots, x_n)||| \leq \|x_1\|^p + \|x_2\|^p + \cdots + \|x_n\|^p$$
for all \(x_1, x_2, \ldots, x_n \in X \), where \(p > 0 \) and \(p \neq 1, 2 \), then there is a unique quadratic-additive mapping \(F : X \to Y \) such that

\[
\| F(x) - f(x) \| \leq \begin{cases}
\left(\frac{2n}{|2p-4|} + \frac{2n}{3|2p-2|} \right) \| x \|^p & \text{if } 0 < p < 2 \text{ and } p \neq 1, \\
\frac{2p-4}{2p} & \text{if } p > 2
\end{cases}
\]

for all \(x \in X \).

Remark 2.4 Consider a mapping \(f : X \to Y \) satisfying (5) for a real number \(q < 0 \). Take any \(t > 0 \). If we choose a real number \(s \) with \(0 < ns < t \), then we have

\[N'(Df(x_1, \ldots, x_n), t) \geq N'(Df(x_1, \ldots, x_n), ns) \geq \min \{N(x_1, s^q), \ldots, N(x_n, s^q)\} \]

for all \(x_1, x_2, \ldots, x_n \in X \). Since \(q < 0 \), we have \(\lim_{s \to 0^+} s^q = \infty \). This implies that

\[\lim_{s \to 0^+} N(x_1, s^q) = \cdots = \lim_{s \to 0^+} N(x_n, s^q) = 1 \]

and so

\[N'(Df(x_1, \ldots, x_n), t) = 1 \]

for all \(x_1, \ldots, x_n \in X \) and \(t > 0 \). By (N2), it allows us to get \(Df(x_1, \ldots, x_n) = 0 \) for all \(x_1, \ldots, x_n \in X \). In other words, \(f \) is itself a quadratic additive mapping if \(f \) is a fuzzy \(q \)-almost quadratic-additive mapping for the case \(q < 0 \).

Acknowledgements. This work was supported by Gongju National University of Education Grant.

References

Stability of an n-dimensional functional equation

Received: March 12, 2015; Published: April 23, 2015