Continuity and Boundedness of Superposition Operators on $W_{φ,X}[a,∞)$

Supama

Department of Mathematics, Gadjah Mada University
Yogyakarta 55281, Indonesia
supama@ugm.ac.id

Abstract

For any linear operator on a Banach space, the continuity and the boundedness are equivalent. It may fail for non-linear operators. In this paper, we concern about one of the very useful non-linear operators that is it so-called the superposition operator. The main goal is to construct the sufficient and necessary conditions for the continuity as well for the boundedness of the operator.

Mathematics Subject Classification: 47H30

Keywords: Banach lattice, Archimedean, solid, FK and AK-spaces

1 Introduction

In recent years, function spaces and operator theory has received a lot of attention from mathematicians in the areas of modern analysis and applied mathematics. As we have known that for any linear operator on a Banach space, the continuity and the boundedness are equivalent. It may fail for non-linear operators. Following the facts, we intend to discuss some recent achievements in the operator theory. We focus the discussion on the very useful non-linear operator that is it so-called the superposition operator. The key references are [1],[4],[5], and [6]. In this introductory section we describe some basic notions.

As usual, the real and natural numbers systems will be denoted by \mathbb{R} and \mathbb{N}, respectively.

Let X be a Banach lattice and (E, Σ, μ), where $E \subset \mathbb{R}$, a measure space. A function $s : E \to X$ is called a simple function if there exist a collection of disjoint measurable sets $E_1, E_2, \ldots, E_n \subset E$ with $\bigcup_{k=1}^n E_k = E$ and a
sequence of a_1, a_2, \ldots, a_n in X such that

$$s(x) = \sum_{k=1}^{n} a_k \chi_{A_k}(x), \quad x \in E$$ \hspace{1cm} (1)

If s is a simple function on E, then its representation is not unique. If each a_k's in the expression (1) are distinct and nonzero then (1) is called a canonical representation of s.

A function $f : E \to X$ is said to be measurable if there exists a sequence of simple functions $\{s_n\}$ from E into X such that

$$\lim_{n \to \infty} \|f(x) - s_n(x)\| = 0$$

almost everywhere on E.

Let $s : E \to X$ be a simple function with the canonical representation is given as (1). For any measurable set $A \subset E$, then the vector

$$\int_A s(x) d\mu(x) = \sum_{k=1}^{n} a_k \mu(A \cap A_k),$$

if it is exists, is uniquely determined. The vector $\int_A s(x) d\mu(x)$ is then called the integral of s on A.

The measurable function $f : E \to X$ is said to be integrable on a measurable set $A \subset E$ if there exists a sequence of simple functions $\{s_n\}$ from E into X such that $\lim_{n \to \infty} \|f(x) - s_n(x)\| = 0$ almost everywhere on E and

$$\lim_{n \to \infty} \int_A \|f(x) - s_n(x)\| d\mu(x) = 0$$

Further, the integral of f on A is given by

$$\int_A f(x) d\mu(x) = \lim_{n \to \infty} \int_A s_n(x) d\mu(x)$$ \hspace{1cm} (2)

Let (E, Σ, μ), where $E \subset \mathbb{R}$, be a measure space, $A \in \Sigma$, and X a Banach lattice. The collection of all measurable X-valued functions on A will be denoted by $\mathcal{M}_X(A)$. We then define

$$L_1(A) = \{ f \in \mathcal{M}_\mathbb{R}(A) : \int_A |f(x)| d\mu < \infty \},$$

$$L_1(A) = \{ f \in \mathcal{M}_X(A) : \int_A |f(x)| d\mu = \alpha, \text{ for some } \alpha \in X \}.$$ \hspace{1cm} (2)

For any $f \in \mathcal{M}_X(A)$ and $B \subset A$, we define the function f_B as

$$f_B(t) = \begin{cases} f(t) & , t \in B \\ 0 & , t \notin B \end{cases}$$

It is clear that $f_B \in \mathcal{M}_X(A)$ for every $f \in \mathcal{M}_X(A)$ and measurable set $B \subset A$. Particularly, for any (fixed) $a \in \mathbb{R}$, we write f_x instead of $f_{[a,x]}$.
Definition 1.1 Let H be a linear space over the real number system \mathbb{R}. The non-negative function $\| \cdot \| : H \to [0, \infty)$ is called an F-norm if

i. $\| f \| = 0 \iff f = 0,$

ii. $\|- f\|=\| f\|$ for every $f \in H,$

iii. $\|f + g\| \leq \|f\| + \|g\|$ for every $f, g \in H,$

iv. If the sequence $\{a_n\} \subset \mathbb{R}$ is convergent to some $a \in \mathbb{R}$ and $\{f^{(n)}\} \subset H$ is a sequence such that $\{|f^{(n)} - f|\}$ converges to 0 for some $f \in H$ then $\{|a_n f^{(n)} - af|\}$ converges to 0.

Further, the linear space H equipped with the F-norm $\| \cdot \|$, denoted by $(H, \| \cdot \|)$, is called an F-normed space. If the F-norm have determined, we write shortly the F-normed space by H. A complete F-normed space is called a Fréchet space or an F-space.

An F-space $H \subset \mathcal{M}_X(A)$ is called an FK-space if the canonical map $p_x : H \to X,$

$$p_x(f) = f(x),$$

is continuous for every $x \in A$. An F-space $H \subset \mathcal{M}_X(A)$ is called an AK-space if $f_B, \alpha X_B \in H$ for every $f \in H$, $\alpha \in X$, and measurable set $B \subset A$ with $\mu(B) \leq \infty$, and $\lim_{\mu(B) \to \mu(A)} \|f_B - f\| = 0$.

As usual, for any Banach lattice X, X^+ denotes the collection of all positive vectors in X, namely $X^+ = \{ x \in X; x \geq 0 \}$. If X and Y are Banach lattices, respectively, then a function $\phi : X \to Y$ is called an N-function if it holds the followings

i. $\phi(x) = 0 \iff x = 0,$

ii. ϕ is increasing on X^+,

iii. ϕ is continuous on X, and

iv. $\phi(-x) = \phi(x)$ for every $x \in X$.

The N-function ϕ is said to satisfy the Δ_2-condition if there exists a real number $M > 0$ such that $\phi(2x) \leq M\phi(x)$ for every $x \in X^+$.

Let X be a Banach lattice and ϕ N-function that satisfies the Δ_2-condition. For any real number $a > 1$, we define

$$W_{\phi,X}[a, \infty) = \{ f \in \mathcal{M}_X[a, \infty) : \lim_{x \to \infty} \rho_x(f) = 0 \},$$

where

$$\rho_x(f) = \frac{1}{x} \| \int_a^x \phi(f(t))d\mu \|.$$
We can show that the functions ρ and $\| \cdot \|$,
\[
\rho(f) = \sup \{ \rho_x(f) : x \in [a, \infty) \},
\]
\[
\|f\| = \inf \{ \epsilon > 0 : \rho(\frac{f}{\epsilon}) \leq \epsilon \},
\]
are a modular and an F-norm on $W_\phi X[a, \infty)$, respectively. Further, $W_\phi X[a, \infty)$ is a solid, FK- and AK-space. We also observe the following lemmas.

Lemma 1.2 Let $f \in W_\phi X[a, \infty)$, then for every real number $\beta > 0$ there exists an $\alpha > 0$ such that the condition $\|f\| < \alpha$ implies $\rho(f) < \beta$.

Lemma 1.3 Let $f \in W_\phi X[a, \infty)$, then for every two real numbers $\alpha, \gamma > 0$ there exists a real number $\beta > 0$ such that $\|f\| \leq \alpha$ whenever $\rho(\gamma f) \leq \beta$.

2 Superposition Operators

Let X and Y be Archimedean, σ-order complete Banach lattices, respectively and $g(., .): A \times X \to Y$ a function such that $g(., t)$ is measurable for any $t \in X$ and $g(x, 0) = 0$ for each $x \in A$. The operator $P_g : \mathcal{M}_X(A) \to \mathcal{M}_Y(A)$,
\[
P_g(f)(x) = g(x, f(x)), \quad f \in \mathcal{M}_X(A), \quad x \in A
\]
is called the superposition operator.

Through out this paper we always assume that the Banach lattices X and Y are Archimedean and σ-order complete, unless otherwise stated. We observe the following lemma.

Lemma 2.1 Let $A \in \Sigma$, $\mathcal{D} \subset \mathcal{M}_Y(A)$ be an FK- and AK-space and the function $g(., .): A \times X \to Y$ satisfies $g(., t)$ is measurable on A for every $t \in X$, $g(x, 0) = 0$, and $g(x, .)$ is continuous on X for every $x \in A$. If there exist $\alpha \in Y^+$ and $\beta \in Y^+ - \{0\}$ such that the condition $\frac{1}{\mu(B)} \int_B \phi(f(x))d\mu \leq \beta$ implies $\int_B |g(x, f(x))|d\mu \leq \alpha$ for every $f \in \mathcal{D}$ and measurable set $B \subset A$ with $\mu(B) \neq 0$, then for every measurable set $B \subset A$ there exists a non-negative function $h \in \mathcal{L}_1(B) \subset \mathcal{M}_Y(B)$ with $\int_B h(x)d\mu \leq \alpha$ such that for any $x \in B$,
\[
|g(x, t)| \leq h(x) + 2\alpha \beta^{-1} \mu(B)^{-1} \phi(t),
\]
as $\frac{\phi(t)}{\mu(B)} \leq \beta$.

Proof: Let $B \subset A$ be a measurable set and $t \in X$. We define the function k on $A \times X$ and the function h on B as follow
\[
k(x, t) = \begin{cases}
|g(x, t)| - 2\alpha \beta^{-1} \mu(B)^{-1} \phi(t), & \text{whenever } |g(x, t)| \geq 2\alpha \beta^{-1} \mu(B)^{-1} \phi(t) \\
0, & \text{otherwise}
\end{cases}
\]
Continuity and boundedness of superposition operators

\[h(x) = \sup\{k(x,t) : \frac{\phi(t)}{\mu(B)} \leq \beta\} = k(x,u(x)) \]

It is clear that the both functions \(k \) and \(h \) depend on \(B \). Since \(\phi \) is continuous, then the \(h(x) \) is uniquely determined. From the definition above, it is clear that the function \(h \) is non-negative on \(B \). Further, since \(g(x,:) \) and \(\phi \) are both continuous on \(X \) then \(k(x,:) \) is continuous on \(X \) for every \(x \in B \). The continuity of \(\phi \) then implies the set \(\{t \in X : \frac{\phi(t)}{\mu(B)} \leq \beta\} \) is closed and bounded, and hence \(h \) is bounded on \(B \). What remain to show is \(h \in L_1(B) \).

Let \(B \subset A \) be any measurable set, then \(\int_B \phi(u(x))d\mu \) can be decomposed as

\[\int_B \phi(u(x))d\mu = \int_{A_1} \phi(u(x))d\mu + \int_{A_2} \phi(u(x))d\mu + \ldots + \int_{A_n} \phi(u(x))d\mu, \]

where \(A_1, A_2, \ldots, A_n \subset B \) are measurable, \(\cup_{i=1}^n A_i = B \), \(\mu(A_i \cap A_j) = 0 \), for \(i \neq j \), \(i, j = 1,2,\ldots,n \), and \(\beta \leq \frac{1}{n} \int_{A_i} \phi(u(x))d\mu \leq \beta \), for \(i = 1,2,\ldots,n-1 \), and \(0 \leq \frac{1}{n} \int_{A_n} \phi(u(x))d\mu \leq \beta \). Hence,

\[
\int_B h(x)d\mu = \int_B k(x,u(x))d\mu \leq \int_B |g(x,u(x))|d\mu - 2\alpha \beta^{-1} \mu(B)^{-1} \int_B \phi(u(x))d\mu |
\]

\[
= \sum_{i=1}^n \int_{A_i} |g(x,u(x))|d\mu - 2\alpha \beta^{-1} \mu(B)^{-1} \sum_{i=1}^n \| \int_{A_i} \phi(u(x))d\mu \|
\]

\[
\leq n \alpha - 2\alpha \beta^{-1} \mu(B)^{-1} \sum_{i=1}^n \| \int_{A_i} \phi(u(x))d\mu \| = \alpha.
\]

Thus, \(h \in L_1(B) \). Further, by the definition of \(h \) and \(k \), the assertion follows.

\[\square \]

Notice that the real numbers system \(\mathbb{R} \) is a Banach lattice. Therefore, following the Lemma 2.1 we have the corollary below.

Corollary 2.2 Let \(A \subset \mathbb{R} \) be a measurable set, \(D \subset \mathcal{M}_\mathbb{R}(A) \) an FK- and AK-space, and \(g(.,.) : A \times X \rightarrow \mathbb{R} \) a function such that \(g(.,t) \) measurable for every \(t \in X \), \(g(x,0) = 0 \) and \(g(x,:) \) is continuous on \(X \) for every \(x \in A \). If there are real numbers \(\alpha, \beta > 0 \) such that for any \(f \in D \) and a measurable set \(B \subset A \) with \(\mu(B) \neq 0 \), the condition \(\frac{1}{\mu(B)} \int_B \phi(f(x))d\mu \leq \beta \) implies \(\int_B |g(x,f(x))|d\mu \leq \alpha \), then for any measurable set \(B \subset A \) there exists a non negative function \(h \in L_1(B) \) with \(\int_B h(x)d\mu \leq \alpha \) such that for every \(x \in B \),

\[|g(x,t)| \leq h(x) + 2\alpha \beta^{-1} \mu(B)^{-1} \phi(t), \]

whenever \(\frac{\phi(t)}{\mu(B)} \leq \beta \).

If \(g \) satisfies a certain condition, then we can show that \(P_g : W_{\phi,X}[a,\infty) \rightarrow \mathcal{L}_1[a,\infty) \subset \mathcal{M}_Y[a,\infty) \).
Theorem 2.3 Let \(g(.,.) : [a, \infty) \times X \to Y \) be a function such that \(g(.,t) \) is measurable for any \(t \in X \), \(g(x,0) = 0 \), dan \(g(x,.) \) is continuous on \(X \) for every \(x \in [a, \infty) \). If there exist \(\alpha \in Y^+ \), \(\beta \in Y^+ - \{0\} \), and for any \(s \in [a, \infty) \) there exists a non-negative function \(h \in L_1[a, s] \) with \(\int_a^s h(x)d\mu \leq \alpha \) such that for any \(x \in [a, s] \),

\[
|g(x,t)| \leq h(x) + 2\alpha\|\beta^{-1}\|s^{-1}\phi(t),
\]
as \(\frac{\phi(t)}{s} \leq \beta \), then the superposition operator \(P_g \) maps \(W_{\phi,X}[a, \infty) \) into \(L_1[a, \infty) \).

Proof: Let \(f \in W_{\phi,X}[a, \infty) \), then there exists a real number \(M > 0 \) such that for every \(s \geq M \),

\[
\frac{1}{s}\int_a^s \phi(f(x))d\mu < \beta.
\]

Following the hypothesis, for every \(s \geq M \) we have

\[
\int_a^s |g(x,f(x))|d\mu \leq \int_a^s h(x)d\mu + 2\alpha\|\beta^{-1}\|s^{-1}\|\int_a^s \phi(f(x))d\mu\|
\]

\[
\leq \alpha + 2\alpha\|\beta^{-1}\||\beta\| = 3\alpha.
\]

Since it holds for every \(s \geq M \) then \(\int_a^\infty |g(x,f(x))|d\mu \) exists, or \(g(.,f(.)) \in L_1[a, \infty) \). Thus, \(P_g : W_{\phi,X}[a, \infty) \to L_1[a, \infty) \subset M_Y[a, \infty) \). \(\square \)

The Theorem 2.3 states the sufficient condition so that the superposition operator \(P_g \) maps the space \(W_{\phi,X}[a, \infty) \) onto \(L_1[a, \infty) \subset M_Y[a, \infty) \). It is very difficult to prove the converse of the theorem. However, if the function \(g \) is real valued, i.e. \(g(.,.) : [a, \infty) \times X \to \mathbb{R} \), we can construct the sufficient and necessary conditions so that \(P_g \) maps \(W_{\phi,X}[a, \infty) \) onto \(L_1[a, \infty) \).

Theorem 2.4 Let \(g(.,.) : [a, \infty) \times X \to \mathbb{R} \) be a function such that \(g(.,t) \) is measurable for every \(t \in X \), \(g(x,0) = 0 \), and \(g(x,.) \) is continuous on \(X \) for every \(x \in [a, \infty) \). The superposition operator \(P_g \) maps the space \(W_{\phi,X}[a, \infty) \) onto \(L_1[a, \infty) \) if and only if there exist real numbers \(\alpha, \beta > 0 \) and for each \(s \in [a, \infty) \) there exists a non negative function \(h \in L_1[a, s] \) satisfies \(\int_a^s h(x)d\mu \leq \alpha \) such that for every \(x \in [a, s] \),

\[
|g(x,t)| \leq h(x) + 2\alpha\beta^{-1}s^{-1}\phi(t),
\]

whenever \(\frac{\phi(t)}{s} \leq \beta \).

Proof: The sufficiency follows from the Theorem 2.3 by taking \(Y = \mathbb{R} \).

For the necessity, the functional \(F : W_{\phi,X}[a, \infty) \to \mathbb{R} \),

\[
F(f) = \int_a^\infty |g(x,f(x))|d\mu,
\]
is continuous and orthogonally additive (See the reference [6]). So, there exists a real number \(\eta > 0 \) such that for every \(f \in W_{\phi,X}[a, \infty) \) with \(\|f\| \leq \eta \) we have

\[
\int_a^\infty |g(x, f(x))|d\mu < 1.
\]

It is easy to prove that there exists a real number \(\beta > 0 \) such that the condition \(\rho(f) < \beta \) implies \(\|f\| < \eta \). Thus, there exists \(\beta > 0 \) such that for every \(f \in W_{\phi,X}[a, \infty) \),

\[
\int_a^\infty |g(x, f(x))|d\mu < 1,
\]

whenever \(\rho(f) < \beta \). These implies for every \(s \in [a, \infty) \),

\[
\int_a^s |g(x, f(x))|d\mu < 1,
\]

whenever \(\frac{1}{s} \int_a^s \phi(f(x))d\mu \leq \beta \).

Further, if we take \(\alpha = \sup \{ \int_a^s |g(x, f(x))|d\mu : \frac{1}{s} \int_a^s \phi(f(x))d\mu \leq \beta \} \), then the Theorem 2.3 implies the existence of the non negative function \(h \in L_1[a, s] \) satisfies \(\int_a^s h(x)d\mu \leq \alpha \), such that for any \(x \in [a, s] \),

\[
|g(x, t)| \leq h(x) + 2\alpha \beta^{-1}s^{-1}\phi(t),
\]

as \(\frac{\phi(t)}{s} \leq \beta \). \(\Box \)

Following the Theorem 2.4, for the sequel we always assume that the generator of the superposition operator \(P_g \) is the function \(g(.,.) : [a, \infty) \times X \rightarrow \mathbb{R} \), unless otherwise stated.

3 Continuity of Superposition Operators on \(W_{\phi,X}[a, \infty) \)

Let \(\mathcal{D} \subset \mathcal{M}_X[a, \infty) \) be a space modulared by \(\rho \). The superposition operator \(P_g : \mathcal{D} \rightarrow L_1[a, \infty) \) is said to be continuous at \(f \in \mathcal{D} \) if for every real number \(\epsilon > 0 \) there exists a real number \(\delta > 0 \) such that for every \(h \in \mathcal{D} \) with \(\|f - h\| < \delta \) we have

\[
\|P_g(f) - P_g(h)\| < \epsilon.
\]

The operator \(P_g \) is said to be modular continuous (\(\rho \)-continuous) at \(f \in \mathcal{D} \) if for every pair of real numbers \(\alpha, \epsilon > 0 \) there exists a real number \(\delta > 0 \) such that for each \(h \in \mathcal{D} \)

\[
\|P_g(f) - P_g(h)\| < \epsilon,
\]

whenever \(\rho(\alpha(f - h)) < \delta \). Further, \(P_g \) is said to be continuous (\(\rho \)-continuous) on \(\mathcal{D} \) if \(P_g \) is continuous (\(\rho \)-continuous) at each \(f \in \mathcal{D} \).
Theorem 3.1 The superposition operator \(P_g : W_{\phi,X}[a, \infty) \to L_1[a, \infty) \) is \(\rho \)-continuous if and only if \(P_g \) is continuous.

Proof: For the sufficiency, take any \(f \in W_{\phi,X}[a, \infty) \) and any real number \(\epsilon > 0 \). Since \(P_g \) is \(\rho \)-continuous, then there exists a real number \(\beta > 0 \) such that for any \(h \in W_{\phi,X}[a, \infty) \) with \(\rho(f - h) < \beta \) we have

\[
\|P_g(f) - P_g(h)\| < \epsilon.
\]

Following the Lemma 1.2, there exists \(\alpha > 0 \) such that

\[
\rho(f - h) < \beta,
\]

whenever \(\|f - h\| < \alpha \).

For the necessity, let \(f \in W_{\phi,X}[a, \infty) \) and \(\gamma, \epsilon > 0 \) be arbitrarily. Since \(P_g \) is continuous at \(f \), then there exists a real number \(\alpha > 0 \) such that for any \(h \in W_{\phi,X}[a, \infty) \) with \(\|f - h\| < \alpha \),

\[
\|P_g(f) - P_g(h)\| < \epsilon.
\]

By the Lemma 1.3, for the \(\alpha, \gamma > 0 \) there exists \(\beta > 0 \) such that

\[
\|f - h\| < \alpha,
\]

whenever \(\rho(\gamma(f - h)) < \beta \). These complete the proof. \(\square \)

Theorem 3.2 The operator \(P_g : W_{\phi,X}[a, \infty) \to L_1[a, \infty) \) is \(\rho \)-continuous if and only if the function \(g(x, \cdot) \) is continuous on \(X \) for every \(x \in [a, \infty) \).

Proof: The sufficiency: Let \(\gamma > 0 \) be any real number, then there exists a positive integer \(n_0 \) such that \(\frac{1}{n_0} < \gamma \). Since the function \(g(x, \cdot) \) is continuous on \(X \) for every \(x \in [a, \infty) \) and \(P_g : W_{\phi,X}[a, \infty) \to L_1[a, \infty) \), then by the Theorem 2.4 there exist real numbers \(\alpha, \beta > 0 \) and for every \(s \in [a, \infty) \) there exists a non negative function \(h \in L_1[a, s] \) with \(\int_a^s h(x)d\mu \leq \alpha \) such that for each \(x \in [a, s] \),

\[
|g(x,t)| \leq h(x) + 2\alpha\beta^{-1}s^{-1}\phi(\frac{1}{2n_0}t),
\]

whenever \(\frac{\phi(\frac{1}{n_0}s)}{s} \leq \beta \). Let \(f \in W_{\phi,X}[a, \infty) \), i.e.

\[
\lim_{s \to \infty} \rho_s(\frac{1}{n_0}f) = 0,
\]

then for every real number \(\epsilon > 0 \) there is an \(M > a \) such that for any \(s \geq M \),

\[
\rho_s(\frac{1}{2n_0}f) \leq \rho_s(\frac{1}{n_0}f) < \frac{\beta\epsilon}{16\alpha}.
\]
Then, by choosing \(k \in W_{\phi,X}[a, \infty) \) such that \(\rho(\frac{1}{n_0}(f - k)) < \frac{\beta \epsilon}{16\alpha} \), then for any \(s \geq M \) we have

\[
\rho_s\left(\frac{1}{2n_0}k\right) = \rho_s\left(\frac{1}{2n_0}(k - f) + \frac{1}{2n_0}f\right) \\
\leq \rho_s\left(\frac{1}{n_0}(k - f)\right) + \rho_s\left(\frac{1}{n_0}f\right) \\
\leq \frac{\beta \epsilon}{16\alpha} + \frac{\beta \epsilon}{16\alpha} = \frac{\beta \epsilon}{8\alpha}.
\]

Since the function \(g(x,.) \) is continuous on \(X \) for every \(x \in [a, \infty) \), then there exists \(\delta > 0 \), \(\delta < \frac{\beta \epsilon}{16\alpha} \), such that for any \(x \in [a, s] \), the condition \(\|f(x) - k(x)\| < n_0\delta \) implies

\[
\int_a^s |g(x, f(x)) - g(x, k(x))|d\mu < \frac{\epsilon}{4}.
\]

By taking \(b \in [a, s] \) such that \(\int_b^s h(x)d\mu < \frac{\epsilon}{8} \), then for each \(s \geq M \) we have

\[
\int_a^s |g(x, f(x)) - g(x, k(x))|d\mu \leq \int_a^b |g(x, f(x)) - g(x, k(x))|d\mu \\
+ \int_b^s |g(x, f(x))|d\mu + \int_b^s |g(x, k(x))|d\mu \\
< \frac{\epsilon}{4} + 2 \int_b^s h(x)d\mu \\
+ 2\alpha\beta^{-1}s^{-1} \int_b^s \phi(\frac{1}{2n_0}f(x))d\mu \\
+ 2\alpha\beta^{-1}s^{-1} \int_b^s \phi(\frac{1}{2n_0}k(x))d\mu \\
< \frac{\epsilon}{4} + \frac{\epsilon}{4} + \frac{\epsilon}{4} + \frac{\epsilon}{4} = \epsilon.
\]

Thus, for every \(f \in W_{\phi,X}[a, \infty) \) and real numbers \(\epsilon, \gamma > 0 \) there exists \(\delta > 0 \) such that for any \(k \in W_{\phi,X}[a, \infty) \) with \(\rho(\gamma(f - k)) < \delta \), which implies \(\rho(\frac{1}{n_0}(f - k)) < \frac{\beta \epsilon}{16\alpha} \), we have

\[
\|P_g(f) - P_g(k)\| < \epsilon,
\]

i.e. \(P_g \) is \(\rho \)-continuous at \(f \).

The necessity: Let \(x \in [a, \infty) \) and \(t \in X \). We are going to prove that \(g(x,.) \) is continuous at \(t \).

Notice that, for any measurable set \(E \subset [a, \infty) \), \(t \chi_E \in W_{\phi,X}[a, \infty) \). By hypothesis, then for any real number \(\epsilon > 0 \) there is \(\delta_1 > 0 \) such that for any \(f \in W_{\phi,X}[a, \infty) \) with \(\rho(f - t \chi_E) < \delta_1 \), we have

\[
\|P_g(f) - P_g(t \chi_E)\| < \epsilon.
\]
Further, take any \(p \in X \), then for any (fixed) \(s \in [a, \infty) \),

\[
\rho_s(p \chi_E - t \chi_E) = \frac{1}{s} \int_a^s \phi(p \chi_E(x) - t \chi_E(x)) d\mu
\]

\[
= \frac{1}{s} \int_{E \cap [a,s]} \phi(p-t) d\mu = \frac{\phi(p-t)}{s} \mu(E \cap [a,s]).
\]

Since the function \(\phi \) is continuous on \(X \) then there is \(\delta > 0 \) such that the condition \(\| p-t \| < \delta \) implies

\[
\phi(p-t) < \frac{s\delta_1}{\mu(E \cap [a,s]) + 1},
\]

therefore

\[
\rho_s(p \chi_E - t \chi_E) = \frac{\phi(p-t)}{s} \mu(E \cap [a,s]) < \delta_1.
\]

These are followed by

\[
\| P_g(p \chi_E) - P_g(t \chi_E) \| < \epsilon,
\]

since the operator \(P_g \) is \(\rho \)-continuous. Thus, for any real number \(\epsilon > 0 \) there exists \(\delta > 0 \) such that for every \(p \in X \) with \(\| p-t \| < \delta \) we have

\[
| g(x,p) - g(x,t) | < \epsilon,
\]

i.e. \(g(x,.) \) is continuous at \(t \). \(\Box \)

Following the Theorem 3.1 and Theorem 3.2, we then get the following corollary.

Corollary 3.3 The superposition \(P_g : W_{\phi,X}[a, \infty) \rightarrow L_1[a, \infty) \) is continuous if and only if the function \(g(x,.) \) is continuous on \(X \) for every \(x \in [a, \infty) \).

4 Boundedness of Superposition Operators on \(W_{\phi,X}[a, \infty) \)

Let \(D \subset M_X[a, \infty) \) be a modulared spaces with the modular \(\rho \) and \(g(.,.) : [a, \infty) \times X \rightarrow \mathbb{R} \) a function such that \(g(.,t) \) is measurable for every \(t \in X \) and \(g(x,0) = 0 \) for every \(x \in [a, \infty) \). The superposition operator \(P_g : D \rightarrow L_1[a, \infty) \) is said to be **locally modular bounded** at \(f \in D \) if there exist real numbers \(\alpha, \beta, \gamma > 0 \) such that for every \(h \in D \) with \(\rho(\gamma(f-h)) \leq \alpha \) we have

\[
\| P_g(h) \| \leq \beta.
\]
Operator P_g is said to be **locally bounded** at $f \in D$ if there exist real numbers $\alpha, \beta > 0$ such that for any $h \in D$ with $\|f - h\| \leq \alpha$ we have

$$\|P_g(h)\| \leq \beta.$$

Further, operator P_g is said to be **locally modular bounded** (locally bounded) if P_g is locally modular bounded (locally bounded) at every $f \in D$. It is easy to prove that the superposition operator $P_g : D \to L_1[a, \infty)$ is locally modular bounded iff it is locally bounded.

Theorem 4.1 Let $g(.,.) : [a, \infty) \times X \to \mathbb{R}$ be a function such that $g(.,t)$ is measurable for every $t \in X$, $g(x,0) = 0$ for every $x \in [a, \infty)$, and for every $s \in [a, \infty)$ and $n \in \mathcal{N}$ there exist non negative functions $f_1, h \in L_1[a, s]$ and there is a $\delta > 0$ such that for any $x \in [a, s]$,

$$|g(x,t)| \leq h(x) + x^{-1} f_1(x) \phi\left(\frac{1}{n}t\right),$$

as $\frac{1}{x^n} \phi\left(\frac{1}{n}t\right) \leq \delta$. The superposition operator $P_g : W_{\phi,X}[a, \infty) \to L_1[a, \infty)$ is locally modular bounded iff for every $x \in [a, \infty)$, the function $g(x,.)$ is bounded on any closed and bounded subset in X.

Proof: For the sufficiency, take any $x \in [a, \infty)$ and $t \in X$. If $E \subset [a, \infty)$ is any measurable set with $\mu(E) < \infty$ then $t \chi_E \in W_{\phi,X}[a, \infty)$. By the hypothesis there exists real numbers $\alpha_1, \beta, \gamma > 0$ such that for every $k \in X$, the condition $\rho(\gamma(t - k) \chi_E) \leq \alpha_1$ implies

$$\|P_g(k \chi_E)\| \leq \beta.$$

Further, since ϕ is continuous on X, then there exists a real number $\alpha > 0$ such that

$$\rho(\gamma(t - k) \chi_E) \leq \alpha_1,$$

whenever $\|t - k\| \leq \alpha$. Thus, there exists a real number $\alpha, \beta > 0$ such that for any $x \in [a, \infty)$,

$$|g(x,k)| \leq \|P_g(k \chi_E)\| \leq \beta,$$

as $\|t - k\| \leq \alpha$. It means $g(x,.)$ is locally bounded at t. Further, if $A \subset X$ is closed and bounded then by the Heine-Borel Theorem, $g(x,.)$ is closed on A.

For the necessity, let $s \in [a, \infty)$ and $n \in \mathcal{N}$ be arbitrarily. By the hypothesis there exists a non negative functions $f_1, h \in L_1[a, s]$ and a real number $\delta > 0$ such that for any $x \in [a, s]$,

$$|g(x,t)| \leq h(x) + x^{-1} f_1(x) \phi\left(\frac{1}{n}t\right),$$
whenever $\frac{1}{x^n} \phi(\frac{1}{n} t) \leq \delta$. Further, suppose $f \in W_{\phi,X}[a, \infty)$, then there is a real number $M > a$ such that for every $x \geq M$ we have
\[
 \rho_x(\frac{1}{n} f) = \frac{1}{x} \int_a^x \phi(f(s)) d\mu \leq \frac{\delta}{4}.
\]
However, from the definition of the function ϕ, we can choose $k \in W_{\phi,X}[a, \infty)$ such that
\[
 \frac{1}{x} \phi(\frac{1}{n_0} k) < \delta \quad \text{and} \quad \rho(\frac{1}{n_0} (f \ominus k)) < \frac{\delta}{4},
\]
for some $n_0 \in \mathcal{N}$. For any $x < M$, let
\[
m(x) = \sup \{|g(x,t)| : \phi(\frac{1}{n}(t \ominus f(x)) \leq \frac{\delta}{4}\}.
\]
Since ϕ is continuous on X then the set
\[
 A = \{t : \phi(\frac{1}{n}(t \ominus f(x)) \leq \frac{\delta}{4}\}
\]
is closed and bounded in X. Therefore, by the hypothesis $m(x) < \infty$ for any $x < M$. Thus, for every $s > M$ and $k \in W_{\phi,X}[a, \infty)$ with $\rho(\frac{1}{n_0} (f \ominus k)) < \frac{\delta}{4}$ we have
\[
 \int_a^s |g(x,k(x))| d\mu = \int_a^M |g(x,k(x))| d\mu + \int_M^s |g(x,k(x))| d\mu \\
\leq \int_a^M m(x) d\mu + \int_M^s \{h(x) + x^{-1} f_1(x) \phi(\frac{1}{n_0} k(x))\} d\mu \\
\leq K + \|h\| + \frac{\delta}{2} \|f_1\|, \quad \text{for some } K > 0.
\]
If we take $s \to \infty$ then
\[
 \|P_g(k)\| \leq K + \|h\| + \frac{\delta}{2} \|f_1\|.
\]
Finally, by letting $\alpha = \frac{\delta}{4}$, $\beta = K + \|h\| + \frac{\delta}{2} \|f_1\|$, and $\gamma = \frac{1}{n_0}$ the assertion follows. \qed

Corollary 4.2 Let $g(.,.): [a, \infty) \times X \to \mathbb{R}$ be a function as in Theorem 4.1. The superposition operator $P_g : W_{\phi,X}[a, \infty) \to L_1[a, \infty)$ is locally bounded iff for every $x \in [a, \infty)$, the function $g(x,.)$ is bounded on any closed and bounded subset in X.

Let $\mathcal{D} \subset \mathcal{M}_X[a, \infty)$ be a modulared space with the modular ρ and $g(.,.): [a, \infty) \times X \to \mathbb{R}$ a function such that $g(.,t)$ is measurable for every $t \in X$
and \(g(x,0) = 0 \) for every \(x \in [a, \infty) \). The superposition operator \(P_g : \mathcal{D} \to L_1[a, \infty) \) is said to be modular bounded on \(\mathcal{D} \) if for every \(f \in \mathcal{D} \) and for any real constants \(\alpha, \beta > 0 \) there exists \(\delta > 0 \) such that for every \(h \in \mathcal{D} \),

\[
\|P_g(h)\| \leq \delta,
\]

whenever \(\rho(\alpha(f - h)) \leq \beta \). The operator \(P_g \) is said to be bounded on \(\mathcal{D} \) if for every real number \(\alpha > 0 \) there exists a \(\delta > 0 \) such that for every \(f \in \mathcal{D} \) with \(\|f\| \leq \alpha \), we have

\[
\|P_g(f)\| \leq \delta.
\]

We can easily prove the following theorems.

Theorem 4.3 Let \(f \in W_{\phi,X}[a, \infty) \) and \(\alpha, \beta > 0 \), then there exits real numbers \(\alpha_1, \beta_1 > 0 \) such that for every \(h \in W_{\phi,X}[a, \infty) \) with \(\rho(\alpha(f - h)) \leq \beta \) we have \(\rho(\alpha_1 h) \leq \beta_1 \).

Theorem 4.4 The superposition operator \(P_g : W_{\phi,X}[a, \infty) \to L_1[a, \infty) \) is modular bounded iff for every real numbers \(\alpha, \gamma > 0 \) there exists \(\beta > 0 \) such that for any \(h \in W_{\phi,X}[a, \infty) \) with \(\rho(\gamma h) \leq \alpha \) we have \(\|P_g(h)\| \leq \beta \).

Theorem 4.5 The superposition operator \(P_g : W_{\phi,X}[a, \infty) \to L_1[a, \infty) \) is modular bounded iff it is bounded.

Theorem 4.6 Let the function \(g(.,.) : [a, \infty) \times X \to \mathbb{R} \) satisfies the following conditions: \(g(.,t) \) is measurable for every \(t \in X \), \(g(x,0) = 0 \) for every \(x \in [a, \infty) \), and for every real number \(\beta > 0 \) and \(s \in [a, \infty) \) there exist non negative functions \(f, h \in L_1[a, s] \) such that for every \(x \in [a, s] \)

\[
|g(x, t)| \leq h(x) + \frac{1}{x} f(x) \phi(t),
\]

whenever \(\frac{\phi(t)}{x} \leq \beta \). If \(g(x,.) \) is bounded on \(X \) then \(P_g : W_{\phi,X}[a, \infty) \to L_1[a, \infty) \) is modular bounded.

Proof: Take any \(s \in [a, \infty) \) and any real number \(\beta > 0 \). By the hypothesis there exist non negative functions \(f, h \in L_1[a, s] \) such that for every \(x \in [a, s] \),

\[
|g(x, t)| \leq h(x) + \frac{1}{x} f(x) \phi(t),
\]

whenever \(\frac{\phi(t)}{x} \leq \beta \).

Let \(k \in W_{\phi,X}[a, \infty) \) be an arbitrarily, then there exists an \(M > a \) such that for every \(x \geq M \)

\[
\rho_x(f) = \frac{1}{x} \int_a^x \phi(k(\zeta))d\mu \leq \beta.
\]
For any $x < M$, we define

$$m(x) = \sup\{|g(x,t)| : t \in X\}.$$

Since $g(x,.)$ is bounded on X, then $m(x) < \infty$. Further, if $\gamma > 0$ then the condition $\rho(\gamma k) \leq \beta$ implies

$$\int_a^s |g(\zeta, \gamma k(\zeta))| d\mu = \int_a^M |g(\zeta, \gamma k(\zeta))| d\mu + \int_M^s |g(\zeta, \gamma k(\zeta))| d\mu$$

$$\leq \int_a^M m(\zeta) d\mu + \int_M^s \{h(\zeta) + 1 + \frac{1}{\zeta} f(\zeta) \phi(\gamma k(\zeta))\} d\mu$$

$$\leq K + \|h\| + \beta \|f\|,$$

for some $K > 0$. Since, it is hold for all $s \in [a, \infty)$ then

$$\int_a^\infty s|g(\zeta, \gamma k(\zeta))| d\mu \leq K + \|h\| + \beta \|f\|,$$

untuk suatu $K > 0$.

Further, if we take $\delta = K + \|h\| + \beta \|f\|$, then

$$\|P_g(\gamma k)\| \leq \delta.$$

By Theorem 4.4, P_g is modular bounded. □

Corollary 4.7 Let $g(.,:) : [a, \infty) \times X \to \mathbb{R}$ be a function as in the Theorem 4.6. If $g(x,.)$ is bounded on X then $P_g : W_{\phi,X}[a, \infty) \to L_1[a, \infty)$ is bounded.

References

Received: April 21, 2008