On the Trinomial Arcs $J(p,k,r,n)$

Kaoutar Lamrini Uahabi

F.A.R. Blvd., 49, Apartment N. 9
Nador 62000, Morocco
lamrinika@yahoo.fr

Abstract
We study the trinomial arcs $J(p,k,r,n)$ and we prove the monotonicity of this category of arcs.

Mathematics Subject Classification: 26C10, 30C15, 14H45, 26A48

Keywords: arc, differentiable, feasible angle, monotonic, trinomial

1 Introduction and Preliminaries

In [2], it was established that the trinomial arcs $I(p,k,r,n)$ are monotonic, a question which was pointed out in [1]. According to [2], $I(p,k,r,n)$ is the set of roots of the trinomial equation

$$z^n = \alpha z^k + (1 - \alpha) \quad (1)$$

where α is a real number between 0 and 1, $z = \rho e^{i\theta}$ is a complex variable, n and k are two integers such that $k = 1, 2, ..., n-1$. Let us recall that an angle θ is called feasible for equation (1) with $0 < \alpha < 1$ if $\text{sign} (\sin n\theta) = \text{sign} (\sin k\theta) = -\text{sign} (\sin (n-k)\theta)$. The feasible angles θ for the arcs $I(p,k,r,n)$ belong to the interval $[\arg (\gamma), \arg (\delta)]$ such that γ is an n^{th} root of unity and δ is both a k^{th} root of -1 and an $(n-k)^{th}$ root of unity. In view of [2], there exists another type of trinomial arcs inside the unit disk, which we will denote by $J(p,k,r,n)$, such that the feasible angles belong to $[\arg (\delta), \arg (\gamma')]$ where γ' is an n^{th} root of unity and δ is equidistant from γ and from γ'. If we set $\arg (\gamma) = 2\pi r/n$ where r is a nonzero integer, so $\arg (\gamma') = 2(r+1)\pi/n$. Moreover, we can put $\arg (\delta) = (2p+1)\pi/k$ where p is an integer.

The study of the behavior of the trinomial arcs $J(p,k,r,n)$ is a problem pointed out in [2] and before that in [1]. In the present work, this problem will be completely solved.
Note that the continuous arcs $J(p,k,r,n)$ illustrated in the figure below can be expressed in polar coordinates (ρ, θ) by a function $\rho(\theta)$. The main purpose of this paper is to show that $\rho(\theta)$ is an increasing function. Applying the symmetry map $z \rightarrow \overline{z}$, the upper and lower half-planes are symmetrical. Thus, we restrict our study to the upper half-plane.

In [2], Lemma 3.1 and Remark 3.2 allow us to affirm that for any trinomial arc $J(p,k,r,n)$, the integer k verify that $k = (2p + 1)n/(2r + 1)$ where the integers p and r satisfy the condition $r \geq p + 1$ and such that $\text{arg} (\delta) = (2p + 1)\pi/k$ and $\text{arg} (\gamma') = 2(r + 1)\pi/n$. The trajectories of roots of (1) with $0 < \alpha < 1$ are linear when $n = 2$. Hence, we define $J(p,k,r,n)$ as follows.

Proposition 1.1 Let n be an integer larger than or equal to 3 and α be a real number between 0 and 1. In equation (1) with $k = (2p + 1)n/(2r + 1)$ is an integer and p and r are two integers such that $r > p$, any angle of the interval $[(2p + 1)\pi/k, 2(r + 1)\pi/n]$ is feasible.

Proof. Assume that $k = (2p + 1)n/(2r + 1)$ is an integer. Let us consider an angle θ such that $(2p + 1)\pi/k < \theta < 2(r + 1)\pi/n$. Because $(2p + 1)\pi/k = (2r + 1)\pi/n$, we find that $(2r + 1)\pi < n\theta < (2r + 2)\pi$ and that $\sin n\theta < 0$. Also, one can see immediately that $(2p + 1)\pi < k\theta < 2(r + 1)(2p + 1)\pi/(2r + 1)$. Since $r \geq p + 1$, it yields that $2(r + 1)(2p + 1)\pi/(2r + 1) < (2p + 2)\pi$ and that $\sin k\theta < 0$. At last, one has $4(r - p)\pi/(2r + 1)< 4(r + 1)(r - p)\pi/(2r + 1)$. As $4(r + 1)(r - p)\pi/(2r + 1) < [2(r - p) + 1]\pi$, we conclude that $\sin(n - k)\theta > 0$. Therefore, the angle θ is feasible and the proof is achieved.
2 Main Results

We shall make use of the following proposition.

Proposition 2.1 \(\rho(\theta)\) is differentiable for all the trinomial arcs \(J(p, k, r, n)\).

Proof. Let be \(J(p, k, r, n)\) a trinomial arc. First, divide equation (1) by \(z^n\). When \(\theta \neq s\pi/(n-k), s \in \mathbb{N}\), one can have \(\rho^k(\theta) = (1-1/\alpha) \sin n\theta / \sin(n-k)\theta\). By Proposition 1.1, any feasible angle \(\theta\) is such that \(\sin n\theta < 0\) and \(\sin(n-k)\theta > 0\). Because \(0 < \alpha < 1\), the function \(\theta \mapsto (1-1/\alpha) \sin n\theta / \sin(n-k)\theta\) is well-defined. Also, this function is differentiable and positive. So, \(\rho(\theta) = [(1-1/\alpha) \sin n\theta / \sin(n-k)\theta]^{1/k}\) is differentiable. Hence, \(d\rho/d\theta\) exists and it’s well-defined. Thus, we achieve the proof.

Now, for \(z = \rho e^{i\theta}\) in equation (1), one can find that \(\rho^e^{i\theta} = \alpha \rho^k e^{i(k\theta)} + 1 - \alpha\). Separating real and imaginary parts, one has

\[
\rho^n - k \sin n\theta - \rho^n \sin (n-k)\theta = \sin k\theta. \tag{2}
\]

Let us differentiate both sides of this equation with respect to \(\theta\). Then

\[
\left[(n-k) \rho^{n-k-1} \sin n\theta - n \rho^{n-1} \sin(n-k)\theta \right] d\rho/d\theta
= k \cos k\theta + (n-k) \rho^n cos(n-k)\theta - n \rho^{n-k} \cos n\theta.
\]

If we suppose that \(d\rho/d\theta = 0\), we obtain that

\[
\begin{cases}
 k \cos k\theta + (n-k) \rho^n \cos(n-k)\theta - n \rho^{n-k} \cos n\theta = 0 \\
 \rho^n - k \sin n\theta - \rho^n \sin (n-k)\theta - \sin k\theta = 0
\end{cases}
\]

This system is equivalent to the following

\[
\begin{cases}
 Z(\theta) \cdot \rho^{n-k} = X(\theta) \\
 Z(\theta) \cdot \rho^n = Y(\theta)
\end{cases} \tag{3}
\]

with

\[
Z(\theta) = n \sin k\theta - k \sin n\theta \cos(n-k)\theta \\
X(\theta) = n \sin k\theta \cos(n-k)\theta - k \sin n\theta \\
Y(\theta) = (n-k) \sin k\theta \cos n\theta - k \sin(n-k)\theta.
\]

As consequence of (3), one can deduce that

\[
Z(\theta) [\rho^n - \rho^{n-k}] = S(\theta) [1 - \cos k\theta] \tag{4}
\]

with

\[
S(\theta) = -[n \sin(n-k)\theta + (n-k) \sin n\theta].
\]

In the rest of this note, we have to contradict the hypothesis \(d\rho/d\theta = 0\) for the family of arcs \(J(p, k, r, n)\). Thus, we shall make use of the following propositions.
Proposition 2.2 Assume that $J(p, k, r, n)$ is a trinomial arc. We have $Z(\theta) < 0$ for all the feasible angles.

Proof. Let $J(p, k, r, n)$ be a trinomial arc and θ be a feasible angle. Because $\sin n\theta < 0$ by Proposition 1.1 and $\cos(n - k)\theta \leq 1$, one can find immediately that $Z(\theta) \leq T(\theta)$, with $T(\theta) = n \sin k\theta - k \sin n\theta$. The values of θ for which $T'(\theta) = 0$ are of the form $\theta = 2j\pi/(n - k)$ or of the form $\theta = 2j\pi/(n + k)$, where $j \in \mathbb{N}$. However, $2j\pi/(n - k) \in [(2p + 1)\pi/k, 2(r + 1)\pi/n]$ if and only if $r - p < j < 2(r + 1)(r - p)/(2r + 1)$. But, the inequality $2(r + 1)(r - p)/(2r + 1) < r - p + 1/2$ contradicts the fact that j is an integer. Moreover, $2j\pi/(n + k) \in [(2p + 1)\pi/k, 2(r + 1)\pi/n]$ is equivalent to $r + p + 1 < j < 2(r + 1)(r + p + 1)/(2r + 1)$. Since $r > p$, one gets $2(r + 1)(r + p + 1)/(2r + 1) < r + p + 2$, which isn’t possible. This allows us to conclude that $T(\theta)$ is monotonic on the interval $[(2p + 1)\pi/k, 2(r + 1)\pi/n]$. Lastly, observing that $T((2p + 1)\pi/k) = 0$ and that $T(2(r + 1)\pi/n) < 0$, we deduce that $T(\theta) < 0$ and that $Z(\theta) < 0$ for any feasible angle θ.

Proposition 2.3 Suppose that $J(p, k, r, n)$ is a trinomial arc. We have $S(\theta) < 0$ for all the feasible angles.

Proof. Assume that $J(p, k, r, n)$ is a trinomial arc and that θ is a feasible angle. Estimating $S(\theta)$ at the bounds of the interval of feasible angles, one can obtain that $S((2p + 1)\pi/k) = 0$ and that $S(2(r + 1)\pi/n) < 0$. In order to show that $S(\theta) < 0$ on $[(2p + 1)\pi/k, 2(r + 1)\pi/n]$, we have to prove that $S(\theta)$ is monotonic on this interval. The roots of the equation $S'(\theta) = 0$ are of the form $\theta = (2j - 1)\pi/k$ or of the form $\theta = (2j + 1)\pi/(2n - k)$ where $j \in \mathbb{N}$. As for the first solution, $(2j - 1)\pi/k$ is feasible if and only if $p + 1 < j < [(r + 1)(2p + 1)/(2r + 1)] + 1/2$. Because $r > p$, it yields that $[(r + 1)(2p + 1)/(2r + 1)] + 1/2 < p + 3/2$. This can not occur as j is an integer. For the second solution, $(2j + 1)\pi/(2n - k)$ is feasible if and only if $2r - p < j < [(r + 1)(4r - 2p + 1)/(2r + 1)] - 1/2$. But the inequality $[(r + 1)(4r - 2p + 1)/(2r + 1)] - 1/2 < 2r - p + 1$ contradicts the fact that j is an integer. This clearly means that $S(\theta)$ is a monotonic function. Thus, we achieve the proof.

Theorem 2.4 Let $J(p, k, r, n)$ be a trinomial arc. For all the feasible angles θ, the function $\rho(\theta)$ is increasing.

Proof. Let θ be a feasible angle on the interval $[(2p + 1)\pi/k, 2(r + 1)\pi/n]$. By first, the question is to prove that $\rho(\theta)$ is a monotonic function. Applying the propositions 2.2 and 2.3, we have $Z(\theta) < 0$ and $S(\theta) < 0$. According to equation (4), we find that $Z(\theta)\rho^n = S(\theta)[1 - \cos k\theta]$. Hence, one can deduce that $\rho^n > \rho^{n-k}$. This last inequality provides a contradiction with the
fact that $\rho < 1$. Thus, the hypothesis $d\rho/d\theta = 0$ is not possible for the arcs $J(p, k, r, n)$. Otherwise, to estimate $\rho(\theta)$ at the angle $2(r+1)\pi/n$, let us replace θ by $2(r+1)\pi/n$ in equation (2). It follows that $(\rho^n - 1) \sin [2(r+1)\pi k/n] = 0$. Because $(2p+1)\pi < 2(r+1)\pi k/n < 2(p+1)\pi$, one has $\sin [2(r+1)\pi k/n] \neq 0$. This implies that $\rho[2(r+1)\pi/n] = 1$. Remarking that $\rho(\theta)$ don’t exceed 1 as the arcs $J(p, k, r, n)$ are inside the unit disk, one can have in conclusion of the monotonicity of $J(p, k, r, n)$ that $\rho(\theta)$ is an increasing function.

3 Conclusion

The family of arcs $J(p, k, r, n)$ is one of several families of trinomial arcs solutions of the equation (1). The union of these arcs $J(p, k, r, n)$ studied in this note is a fractal set. Though not as complicated as the Mandelbrot set [3], it’s sufficiently irregular to be considered as an object in computer graphics. In the present paper, it’s established that the function $\rho(\theta)$ is monotonic and more precisely is increasing for all trinomial arcs $J(p, k, r, n)$. Using this result, we hope that it will be possible in the future to estimate the fractal dimension of this fractal set.

References

Received: July, 2008