Fixed Point Theorems for a k-set Contraction Map on a Nearly-convex Subset of a Locally Convex Space1

Chi-Ming Chen and Cheng-Te Liu

Department of Applied Mathematics
National Hsin-Chu University of Education, Taiwan, R.O.C.

Abstract

In this paper, the first part, we establish the fixed point theorems for a k-set contraction map on the class $Q(X,Y)$, (see [1]) . The second part, we generalize the KKM property on a convex set [2] to the KKM^* property on a nearly-convex set, and then we establish fixed point theorems, matching theorems and variational inequalities for this class.

Mathematics Subject Classification: 47H10, 54C60, 54H25, 55M20

Keywords: nearly-convex set, k-set contraction, $KKM^*(X,Y)$, $Q(X,Y)$, coincidence theorem, matching theorem, variational inequality

1 Introduction and Preliminaries

In 1930, Schauder had shown that a continuous compact map $f : X \to X$ defined on a closed convex subset X of a Banach space has a fixed point. This theorem enormous influence on fixed point theory, variational inequalities and equilibrium problems. Recently there are appeared some results on fixed point so-called Kakutani factorizable multi-functions defined on convex sets. In this paper, we will invoke nearly-convexity of constraint regions in place of convexity. The first part, we establish the fixed point theorem and coincidence theorem for a k-set contraction map on the class $Q(X,Y)$. The second part, we generalize the KKM property on a convex set to the KKM^* property on a nearly-convex set, and then we establish the fixed point theorem for a k-set contraction map on the family $KKM^*(X,X)$, which not need a compact map.

1Research supported by the NSC.
Let X and Y be two sets, and let $T : X \to 2^Y$ be a set-valued mapping. We shall use the following notations in the sequel.

(i) $T(x) = \{ y \in Y : y \in T(x) \}$,
(ii) $T(A) = \cup_{x \in A} T(x)$,
(iii) $T^{-1}(y) = \{ x \in X : y \in T(x) \}$,
(iv) $T^{-1}(B) = \{ x \in X : T(x) \cap B \neq \phi \}$,
(v) T is said to lower semicontinuous if for each open subset B of Y, $T^{-1}(B)$ is open in X, and
(vi) if D is a nonempty subset of X, then $\langle D \rangle$ denote the class of all nonempty finite subset of D.

For the case that X and Y are two topological spaces. Then T is said to be closed if its graph $\mathcal{G}_T = \{(x, y) \in X \times Y : y \in T(x)\}$ is closed. T is said to be compact if the image $T(X)$ of X under T is contained in a compact subset of Y. A subset D of X is said to be compactly closed (resp. compactly open) in X if for any compact subset K of X, the set $D \cap K$ is closed (resp. closed) in K. Obviously, D is compactly open in X if and only if its complement D^c is compactly closed in X.

We now introduce a new class of nearly-convex sets. A nonempty subset X of a Hausdorff topological vector space E is said to be nearly-convex [4] if for every compact subset A of X and every neighborhood V of the origin 0 of E, there is a continuous mapping $h_{A,V} : A \to X$ such that $x \in h_{A,V}(x) + V$ for each $x \in A$ and $co(h_{A,V}(A)) \subset X$. We call $h_{A,V}$ a continuous convex-inducing mapping.

Remark 1 (i) In general, the continuous convex-inducing mapping $h_{A,V}$ is not unique. If $U \subset V$, then it is clear that any $h_{A,U}$ can be regarded as an $h_{A,V}$.

(ii) It is clear that the convex set is nearly-convex, but the inverse is not true. For a counterexample, let (M,d) be a metric space, $M = \mathbb{R}^2$, we define the metric $d(x,y) = \max\{|x_1 - y_1|, |x_2 - y_2|\}$, where $x = (x_1, x_2)$, $y = (y_1, y_2) \in M$. Then the set $B(0) = \{ x \in M : d(x,0) < 1 \} \cup \{(1,0), (0,1)(0, -1)\}$ is a nearly-convex set, but not convex.

Let E denote a Hausdorff topological vector space, and $B(E)$ the family of nonempty bounded subsets.
Let $\mathcal{P} = \{P|P\text{ is a family of seminorms which determines the topology on } E\}$. Let \mathcal{R}^+ be the set of all nonnegative real numbers. A mapping $\Phi : B(E) \to \mathcal{R}^+$ is called a measure of noncompactness [3] provided the following conditions hold:

(i) $\Phi(\overline{co}(\Omega)) = \Phi(\Omega)$ for each $\Omega \in B(E)$, where $\overline{co}(\Omega)$ denotes the closure of the convex hull of Ω,

(ii) $\Phi(\Omega) = 0$ if and only if Ω is precompact,

(iii) $\Phi(A \cup B) = \max\{\Phi(A), \Phi(B)\}$, for each $A, B \in B(E)$, and

(iv) $\Phi(\lambda \Omega) = \lambda \Phi(\Omega)$, for each $\lambda \geq 0$, $\Omega \in B(E)$.

The above notion is a generalization of the set measure of noncompactness; if $\{p : P\}, P \in \mathcal{P}$ is a family of seminorms which determines the topology on E, then for each $p \in P$ and $\Omega \in E$, we define the set-measure of noncompactness $\alpha_p : 2^E \to \mathcal{R}^+$ by

$$\alpha_p(\Omega) = \inf\{\varepsilon > 0 : \Omega \text{ can be covered by a finite number of sets and each}$$

$$p - \text{diameter of the sets is less than } \varepsilon \}$$

where the $p - \text{diameter of a set } D = \sup\{p(x - y) : x, y \in D\}$.

Definition 1 A mapping $T : X \to 2^E$ is said to be a k-set contraction map, if there exists $P \in \mathcal{P}$ such that for each $p \in P$, $\alpha_p(T(\Omega)) \leq k\alpha_p(\Omega)$ with $k \in (0, 1)$ for each bounded subset Ω of X and $T(X)$ is bounded.

Let X be a subset of a Hausdorff topological vector space E and Y a topological space, we now define a new class $Q(X, Y)$ of the set-valued mappings from X into Y as follows:

$T \in Q(X, Y)$

\iff for any compact convex subset K of X and any continuous mapping

$$f : T(K) \to K, \text{ the composition } f(T|_K) : K \to K \text{ has a fixed point.}$$

We next generalize the KKM property (see, [2]) on a convex set of a topological vector space to the following form for a nearly-convex set X.

Fixed point theorems

1331

Let $\mathcal{P} = \{P|P\text{ is a family of seminorms which determines the topology on } E\}$. Let \mathcal{R}^+ be the set of all nonnegative real numbers. A mapping $\Phi : B(E) \to \mathcal{R}^+$ is called a measure of noncompactness [3] provided the following conditions hold:

(i) $\Phi(\overline{co}(\Omega)) = \Phi(\Omega)$ for each $\Omega \in B(E)$, where $\overline{co}(\Omega)$ denotes the closure of the convex hull of Ω,

(ii) $\Phi(\Omega) = 0$ if and only if Ω is precompact,

(iii) $\Phi(A \cup B) = \max\{\Phi(A), \Phi(B)\}$, for each $A, B \in B(E)$, and

(iv) $\Phi(\lambda \Omega) = \lambda \Phi(\Omega)$, for each $\lambda \geq 0$, $\Omega \in B(E)$.

The above notion is a generalization of the set measure of noncompactness; if $\{p : P\}, P \in \mathcal{P}$ is a family of seminorms which determines the topology on E, then for each $p \in P$ and $\Omega \in E$, we define the set-measure of noncompactness $\alpha_p : 2^E \to \mathcal{R}^+$ by

$$\alpha_p(\Omega) = \inf\{\varepsilon > 0 : \Omega \text{ can be covered by a finite number of sets and each}$$

$$p - \text{diameter of the sets is less than } \varepsilon \}$$

where the $p - \text{diameter of a set } D = \sup\{p(x - y) : x, y \in D\}$.

Definition 1 A mapping $T : X \to 2^E$ is said to be a k-set contraction map, if there exists $P \in \mathcal{P}$ such that for each $p \in P$, $\alpha_p(T(\Omega)) \leq k\alpha_p(\Omega)$ with $k \in (0, 1)$ for each bounded subset Ω of X and $T(X)$ is bounded.

Let X be a subset of a Hausdorff topological vector space E and Y a topological space, we now define a new class $Q(X, Y)$ of the set-valued mappings from X into Y as follows:

$T \in Q(X, Y)$

\iff for any compact convex subset K of X and any continuous mapping

$$f : T(K) \to K, \text{ the composition } f(T|_K) : K \to K \text{ has a fixed point.}$$

We next generalize the KKM property (see, [2]) on a convex set of a topological vector space to the following form for a nearly-convex set X.

Fixed point theorems

1331
Definition 2 Let X be a nearly-convex subset of a topological vector space E, and Y a topological space. If $T, F : X \to 2^Y$ are two set-valued mappings such that for each finite subset A of X and every neighborhood V of the origin 0 of E, there exists a continuous convex-inducing mapping $h_{A,V} : A \to X$ such that $T(co(h_{A,V}(A))) \subset F(A)$, then we call F a generalized KKM^* mapping with respect to T.

Let $T : X \to 2^Y$ be a set-valued mapping such that if $F : X \to 2^Y$ is a generalized KKM^* mapping with respect to T then the family $\{F_x : x \in X\}$ has the finite intersection property, then we say that T has the KKM^* property. Denote

$$KKM^*(X,Y) = \{T : X \to 2^Y \mid T \text{ has the } KKM^* \text{ property}\}.$$

Remark 2 In particular, for the case $co(A) \subset X$, we may let the convex-inducing mapping $h_{A,V}$ be the identity mapping.

Remark 3 In general, $Q(X,Y)$ and $KKM^*(X,Y)$ may not be comparable. (see,[1])

2 Fixed point theorem for the class $Q(X,Y)$

In this section, we establish a fixed point theorem for a k-set contraction map on the class $Q(X,Y)$, which not need to be a compact map.

Theorem 1 Let X be a nonempty bounded nearly-convex subset of a Hausdorff topological vector space E. Assume that T is a k-set contraction map, $0 < k < 1$. Then X contains a precompact nearly-convex subset.

Proof. Since T is a k-set contraction map, $0 < k < 1$, there exists $P \in \mathcal{P}$ such that for each $p \in P$, we have $\alpha_p(T(A)) \leq k\alpha_p(A)$ for each subset A of X. Take $y \in X$. Let

$$X_0 = X, \quad X_1 = co(T(X_0) \cup \{y\}) \cap X, \quad \text{and}$$

$$X_{n+1} = co(T(X_n) \cup \{y\}) \cap X, \quad \text{for each } n \in N.$$

Then,

1. X_n is nearly-convex, for each $n \in N$,
2. $X_{n+1} \subset X_n$, for each $n \in N$
3. $T(X_n) \subset X_{n+1}$, for each $n \in N$ and
4. $\alpha_p(X_{n+1}) \leq \alpha_p(T(X_n)) \leq k\alpha_p(X_n) \leq \ldots \leq k^{n+1} \alpha_p(X_0)$, for each $n \in N$.

Thus $\alpha_p(X_n) \to 0$, as $n \to \infty$, and hence $X_\infty = \bigcap_{n \geq 1} X_n$ is a nonempty precompact nearly-convex set. □

Remark 4 In the process of the proof of Theorem 1, we call the set X_∞ a precompact-inducing nearly-convex subset of X.

Corollary 1 Let X be a nonempty bounded convex subset of a Hausdorff topological vector space E. Assume that T is a k-set contraction map, $0 < k < 1$. Then X contains a precompact-inducing convex subset.

Theorem 2 Let X be a nonempty bounded nearly-convex subset of a Hausdorff topological vector space E, and let $T \in Q(X, X)$. Assume that:

(i) T is a k-set contraction map, $0 < k < 1$ and closed, and

(ii) the precompact-inducing nearly-convex subset X_∞ of X, $T(X_\infty) \subset X_\infty$

Then T has a fixed point in X.

Proof. Let $\mathcal{N} = \{U_i : i \in I\}$ be a local base of E such that U_i is symmetric and open for each $i \in I$, and let $V \in \mathcal{N}$.

By (i), since $\alpha_p(T(X_n)) \to 0$, as $n \to \infty$, hence $\overline{T(X_\infty)} = \bigcap_{n \geq 1} \overline{T(X_n)}$ is a nonempty compact subset of X_∞. And, since X_∞ is nearly-convex, there is a continuous mapping $h_{T(X_\infty), V} : \overline{T(X_\infty)} \to X_\infty$ such that $x \in h_{T(X_\infty), V}(x) + V$ for each $x \in \overline{T(X_\infty)}$ and $\text{co}(h_{T(X_\infty), V}(T(X_\infty))) \subset X_\infty$.

Let $Z = \text{co}(h_{T(X_\infty), V}(T(X_\infty)))$. Then Z is a compact and convex subset of X, and $T(Z) \subset X_\infty$. Since $T \in Q(X, X)$ and $h_{T(X_\infty), V}$ is continuous, the composition $h_{T(X_\infty), V} \circ T|Z : Z \to 2^Z$ has a fixed point, say $x_V \in h_{T(X_\infty), V}(T(x_V))$. Let $x_V = h_{T(X_\infty), V}(y_V)$ for some $y_V \in T(x_V) \subset T(Z) \subset T(X_\infty)$. Then $y_V \in x_V + V = h_{T(X_\infty), V}(y_V) + V$. Since $\overline{T(X_\infty)}$ is compact, we may assume that $\{y_V\}$ converges to \overline{x}, and then $\{x_V\}$ also converges to \overline{x}. The closedness of T implies $\overline{x} \in T(\overline{x})$. □

Follow above Theorem 2, we immediately have the following corollary.

Corollary 2 [1] Let X be a nonempty nearly-convex subset of a Hausdorff topological vector space E, and let $T \in Q(X, X)$ be compact and closed with $T(X) \subset X$. Then T has a fixed point in X.

We next establish the following coincidence theorem.
Theorem 3 Let \(X \) be a nonempty bounded convex subset of a Hausdorff topological vector space \(E \), and let \(T, G : X \to 2^X \) be two set-valued mappings. Assume that:

(i) \(T \in Q(X,X) \) is a \(k \)-set contraction map, \(0 < k < 1 \) and closed with \(\overline{T(X)} \subset X \),

(ii) for each \(y \in G(X) \), \(G^{-1}(y) \) is convex, and

(iii) for the precompact-inducing convex subset \(X_\infty \) of \(X \), \(\overline{T(X_\infty)} \subset \bigcup \{ \text{int}G(x) : x \in X_\infty \} \).

Then there exists an \(x_0 \in X \) such that \(T(x_0) \cap G(x_0) \neq \phi \).

Proof. By the same process of the proof of Theorem 2, we get a compact subset \(\overline{T(X_\infty)} \) of \(X \).

By (iii), there exists a finite subset \(\{ x_1, x_2, \ldots, x_n \} \) of \(X_\infty \) such that \(\overline{T(X_\infty)} \subset \bigcup_{i=1}^n \text{int}G(x_i) \). Let \(\{ \lambda_i \}_{i=1}^n \) be a partition of the unity subordinated to \(\{ \text{int}G(x_i) : i = \{1,2,\ldots,n\} \} \), and let \(P = \text{co}\{x_1, x_2, \ldots, x_n\} \). Define \(f : \overline{T(X_\infty)} \to P \) by

\[
f(y) = \sum_{i=1}^n \lambda_i(y)x_i = \sum_{i \in N_y} \lambda_i(y)x_i, \text{ for each } y \in \overline{T(X_\infty)},
\]

where \(i \in N_y \) iff \(\lambda_i(y) \neq 0 \) iff \(y \in \text{int}G(x_i) \subset G(x_i) \).

Then \(x_i \in G^{-1}(y) \) for each \(i \in N_y \). Clearly, \(f \) is continuous, and by (ii), we have

\[
f(y) \in \text{co}\{x_i : i \in N_y\} \subset G^{-1}(y), \text{ for each } y \in \overline{T(X_\infty)}.
\]

Since \(P \) is compact convex subset of \(X \) and \(T \in Q(X,X) \), the composition \(f|T(P) \circ T|_P : P \to P \) has a fixed point \(x_0 \in P \subset X \). So \(x_0 \in fT(x_0) \) and \(f^{-1}(x_0) \subset G(x_0) \). So, we complete the proof. \(\Box \)

3 Fixed point theorem for the class \(KKM^*(X,Y) \)

In this section, we establish the fixed point theorem for a \(k \)-set contraction map on the class \(KKM^*(X,Y) \), which not need to be a compact map.

The following Lemma 1 will play important role for this paper.

Lemma 1 Let \(X \) be a nonempty nearly-convex subset of a Hausdorff topological vector space \(E \), \(Y \) a topological space. Then \(T|_D \in KKM^*(D,Y) \) whenever \(T \in KKM^*(X,Y) \) and \(D \) is a nonempty nearly-convex subset of \(X \).
Proof. Let $F : D \to 2^Y$ be a generalized KKM^* mapping with respect to $T|_D$. Then for any finite subset A of D and any neighborhood V of the origin 0 of E, there exists a continuous convex-inducing mapping $h_{A,V} : A \to D$ such that $T|_D(co(h_{A,V}(A))) \subset F(A)$.

Define $F' : X \to 2^Y$ by

$$F'(x) = \begin{cases} F(x) & x \in D, \\ Y & x \in X \setminus D. \end{cases}$$

It is clear that for any finite subset B of X and any any neighborhood U of the origin 0 of E, there exists a continuous convex-inducing mapping $h_{B,U} : B \to X$ such that $T(co(h_{B,U}(B))) \subset F'(B)$. Indeed,

1. if $B \not\subseteq D$, then there exists some $x \in B \setminus D$, and hence $F'(x) = Y$. So the result is obvious.
2. if $B \subseteq D$, since F be a generalized KKM^* mapping with respect to $T|_D$, the inclusion is true.

Thus F' is a generalized KKM^* mapping with respect to T. Since $T \in KKM^*(X,Y)$, hence the family $\{F'x : x \in X\}$ has finite intersection property, and so does the family $\{\overline{T}x : x \in D\}$. So $T|_D \in KKM^*(D,Y)$. \square

Lemma 2 Let X be a nonempty nearly-convex subset of a Hausdorff topological vector space E, Y and z are two topological spaces. Then $fT \in KKM^*(X,Z)$ whenever $T \in KKM^*(X,Y)$ and $f \in C(Y,Z)$.

Proof. Let F be a generalized KKM^* mapping with respect to fT. Then for any $A = \{x_1, x_2, \ldots, x_n\} \in \langle X \rangle$ and any neighborhood of the origin 0 of E, there exists a continuous convex-inducing mapping $h_{A,V}(A) : A \to X$ such that $fT(co(h_{A,V}(A))) \subset \bigcup_{i=1}^n F(x_i)$. So, $T(co(h_{A,V}(A))) \subset \bigcup_{i=1}^n f^{-1}F(x_i)$, which says that $f^{-1}F$ is a generalized KKM^* mapping with respect to T. Since $T \in KKM^*(X,Y)$, the family $\{f^{-1}F(x) : x \in X\}$ has the finite intersection property, and so does the family $\{F(x) : x \in X\}$. This shows that $fT \in KKM^*(X,Z)$. \square

Theorem 4 Let X be a nonempty bounded nearly-convex subset of a locally convex space E, and let $T \in KKM^*(X,X)$ is a k-set contraction, $0 < k < 1$ and closed with $\overline{T(X)} \subset X$. Then T has a fixed point in X.

Proof. Let $\mathcal{N} = \{U_i : i \in I\}$ be a local base of E such that U_i is symmetric, open and convex for each $i \in I$, and let $V \in \mathcal{N}$.

And, by the same process of the proof of Theorem 2, we get a compact subset $\overline{T(X_\infty)}$ of X. Since $\overline{T(X_\infty)} \subset T(X) \subset X$ and X is nearly-convex, there
is a continuous mapping $h_{\overline{T(X_\infty)},V} : \overline{T(X_\infty)} \to X$ such that $x \in h_{\overline{T(X_\infty)},V}(x) + V$ for each $x \in \overline{T(X_\infty)}$ and $\text{co}(h_{\overline{T(X_\infty)},V}(\overline{T(X_\infty)})) \subset X$.

Let $Z = \text{co}(h_{\overline{T(X_\infty)},V}(\overline{T(X_\infty)}))$. Then Z is a compact and convex subset of X, and $T(Z) \subset X$. Since $T \in KKM^*(X,X)$ and X_∞ is a nearly-convex subset of X, by Lemma 1, we have $T|_{X_\infty} \in KKM^*(X_\infty,X)$. Next, since $h_{\overline{T(X_\infty)},V}$ is continuous, by Lemma 2, we have $h_{\overline{T(X_\infty)},V} \circ T|_{X_\infty} \in KKM^*(X_\infty,Z)$. Put $F = h_{\overline{T(X_\infty)},V} \circ T|_{X_\infty}$. Then F is closed, since T is closed, $h_{\overline{T(X_\infty)},V}$ is continuous and $\overline{T(X_\infty)}$ is compact.

We now claim that for each $U_i \in \mathcal{N}$, there exists an $x_i \in X_\infty$ such that

$$(x_i + U_i + V) \cap F(x_i) \neq \phi.$$

If the above statement is not true, then there exists $U \in \mathcal{N}$ such that $(x + U + V) \cap F(x) = \phi$, for all $x \in X_\infty$.

Let $K = \overline{h_{\overline{T(X_\infty)},V}(T(X_\infty))}$. Then $K \subset \overline{h_{\overline{T(X_\infty)},V}(T(X_\infty))} \subset Z$. Define $G : X_\infty \to 2^Z$ by

$$G(x) = K \setminus (x + \frac{1}{2}U + V), \quad \text{for each } x \in X_\infty.$$

Then

1. $G(x)$ is compact, for each $x \in X_\infty$, and
2. G is a generalized KKM^* mapping with respect to F.

We prove (2) by contradiction. Let $A = \{x_1, x_2, ..., x_n\} \subset X_\infty$. Then there exists $V' \in \mathcal{N}$ such that for any continuous convex-inducing $h_{A,V'} : A \to X_\infty$ one has $F(\text{co}(h_{A,V'}(A))) \not\subset G(A)$. Let $U' \in \mathcal{N}$ such that $U' \subset \frac{1}{2}U \cap V'$. Then $F(\text{co}(h_{A,U'}(A))) \not\subset G(A)$. So, there is $u \in \text{co}(h_{A,U'}(A))$ and $v \in F(u)$ such that $v \notin \bigcup_{i=1}^m G(x_i)$.

From the definition of G, it follows that $v \in (x_i + \frac{1}{2}U + V)$, for each $i \in \{1, 2, ..., n\}$. Hence $v \in (x_i + \frac{1}{2}U + V \cap V + U') \subset (h_{A,U'}(x_i) + \frac{1}{2}U + V) \subset (h_{A,U'}(x_i) + U + V)$, for each $i \in \{1, 2, ..., n\}$, since X_∞ is nearly-convex. Thus, $h_{A,U'}(x_i) \in (v + U + V)$, for each $i \in \{1, 2, ..., n\}$, and hence $u \in \text{co}(h_{A,U'}(A)) \subset v + U + V$. So, $v \in u + U + V$ and $v \in F(u)$, we conclude that $F(u) \cap (u + U + V) \neq \phi$, a contradiction. Therefore, G is a generalized KKM^* mapping with respect to F.

Since $F \in KKM^*(X_\infty,Z)$ and G is a generalized KKM^* mapping with respect to F, the family $\{G(x) : x \in X_\infty\}$ has the finite intersection property, and so we conclude that $\cap_{x \in X_\infty} G(x) \neq \phi$. Choose $\eta \in \cap_{x \in X_\infty} G(x)$, then $\eta \in K \setminus (x + \frac{1}{2}U + V)$, for each $x \in X_\infty$. Since $\eta \in \cap_{x \in X_\infty} G(x) \subset K \subset h_{\overline{T(X_\infty)},V}(\overline{T(X_\infty)}) \subset \overline{T(X_\infty)} + V \subset X_\infty + V$, hence there is an $x_0 \in X_\infty$ such that $\eta \in x_0 + \frac{1}{2}U + V$. But $\eta \in K \setminus (x_0 + \frac{1}{2}U + V)$, a contradiction. Therefore, we have proved that for each $U_i \in \mathcal{N}$, there exists an $x_i \in X_\infty$ such that
Fixed point theorems

\begin{align*}
(x_i + U_i + V) \cap F(x_i) \neq \emptyset. \text{ Let } y_i \in (x_i + U_i + V) \cap F(x_i). \text{ Since } \{y_i\} \subset K \text{ and } K \text{ is compact, we may assume that } \{y_i\} \text{ converges to some } y_0 \in K, \text{ and since } \{x_i\} \subset \overline{X_\infty}, \text{ we assume that } \{x_i\} \text{ converges to } x_0. \text{ The closedness of } F \text{ implies that } (x_0, y_0) \in G_F, \text{ so we have } y_0 \in x_0 + V \text{ and } y_0 \in F(x_0) = h_{T(X_\infty), V}(T(x_0)). \text{ Choose } z_0 \in T(x_0) \text{ such that } y_0 = h_{T(X_\infty), V}(z_0).\text{ Noting that } z_0 \in h_{T(X_\infty), V}(z_0) + V = y_0 + V \subset x_0 + V + V \subset (x_0 + V + V + V), \text{ and hence } T(x_0) \cap x_0 + V + V + V \neq \emptyset \text{ for any } V \in \mathcal{N}, \text{ which just as before, implies } T \text{ has a fixed point.} \quad \square
\end{align*}

Corollary 3 Let \(X \) be a nonempty bounded convex subset of a locally convex space \(E \), and let \(T \in KKM(X, X) \) is a \(k \)-set contraction, \(0 < k < 1 \) and closed with \(\overline{T(X)} \subset X \). Then \(T \) has a fixed point in \(X \).

Corollary 4 Let \(X \) be a nonempty nearly-convex subset of a locally convex space \(E \), and let \(T \in KKM^*(X, X) \) is compact and closed. Then \(T \) has a fixed point in \(X \).

Corollary 5 [2] Let \(X \) be a nonempty convex subset of a locally convex space \(E \), and let \(T \in KKM(X, X) \) is compact and closed. Then \(T \) has a fixed point in \(X \).

We now establish the following \(KKM^* \)-type theorem, which is equivalent to the matching theorem after it.

Theorem 5 Let \(X \) be a nonempty bounded nearly-convex subset of a Hausdorff topological vector space \(E \). If \(T, F : X \to 2^X \) are two set-valued mappings satisfying the following:

\begin{enumerate}
 \item \(T \in KKM^*(X, X) \) is a \(k \)-set contraction map, \(0 < k < 1 \) with \(\overline{T(X)} \subset X \),
 \item for any \(x \in X \), \(F(x) \) is compactly closed in \(X \), and
 \item \(F \) is a generalized \(KKM^* \) mapping with respect to \(T \),
\end{enumerate}

then

\[
\overline{T(X_\infty)} \cap (\cap \{F(x) : x \in X_\infty\}) \neq \emptyset,
\]

where \(X_\infty \) is the precompact-inducing nearly-convex subset of \(X \).
Proof. Let \(\mathcal{N} = \{U_i : i \in I\} \) be a local base of \(E \) such that \(U_i \) is symmetric and open for each \(i \in I \). By the same process of the proof of Theorem 2, we get a compact subset \(T(X_\infty) \) of \(X \), and \(T|_{X_\infty} \in KKM^*(X_\infty, X) \), since \(T \in KKM^*(X, X) \).

Define \(H : X_\infty \to 2^X \) by

\[
H(x) = \overline{T(X_\infty)} \cap F(x), \text{ for each } x \in X_\infty.
\]

It follows from (iii) that \(F \) is a generalized \(KKM^* \) mapping with respect to \(T|_{X_\infty} \), and hence for any \(x \in X_\infty \) and any \(V \in \mathcal{N} \), there exists a continuous convex-inducing \(h_{(x),V} : \{x\} \to X_\infty \) such that \(T(co(h_{(x),V}(\{x\}))) \subset F(x) \) and \(co(h_{(x),V}(x)) \subset X_\infty \). So \(H(x) \neq \emptyset \).

By (ii), \(H(x) \) is compact in \(X \), for each \(x \in X_\infty \). We now claim that \(H \) is a generalized \(KKM^* \) mapping with respect to \(T|_{X_\infty} \). Let \(A \in \langle X_\infty \rangle \).

By (iii), for any \(V \in \mathcal{N} \), there exists a continuous convex-inducing mapping \(h_{A,V} : A \to X_\infty \) such that \(T(co(h_{A,V}(A))) \subset F(A) \) and \(co(h_{A,V}(A)) \subset X_\infty \). So, \(T(co(h_{A,V}(A))) \subset F(A) \cap T(X_\infty) = H(A) \). Thus, we have shown that \(H \) is a generalized \(KKM^* \) mapping with respect to \(T|_{X_\infty} \). Since \(T|_{X_\infty} \in KKM^*(X_\infty, X) \), the family \(\{H(x) : x \in X_\infty\} \) has the finite intersection property. And, since \(H(x) \) is compact, hence \(\bigcap_{x \in X_\infty} H(x) \neq \emptyset \), that is, \(\overline{T(X_\infty)} \cap \bigcap \{F(x) : x \in X_\infty\} \neq \emptyset \). \(\square \)

Corollary 6 Let \(X \) be a nonempty bounded convex subset of a Hausdorff topological vector space \(E \). If \(T, F : X \to 2^X \) are two set-valued mappings satisfying the following:

(i) \(T \in KKM(X, X) \) is a \(k \)-set contraction map, \(0 < k < 1 \) with \(\overline{T(X)} \subset X \),
(ii) for any \(x \in X \), \(F(x) \) is compactly closed in \(X \), and
(iii) \(F \) is a generalized \(KKM \) mapping with respect to \(T \),

then there exists a nonempty convex subset \(Y \) of \(X \) such that

\[
\overline{T(X_\infty)} \cap \bigcap \{F(x) : x \in X_\infty\} \neq \emptyset,
\]

where \(X_\infty \) is the precompact-inducing nearly-convex subset of \(X \).

As a consequence of the above theorems, we get the following generalization of the Ky Fan matching theorem.

Theorem 6 Let \(X \) be a nonempty bounded nearly-convex subset of a Hausdorff topological vector space \(E \). If \(T, H : X \to 2^X \) are two set-valued mappings satisfying the following:
(i) $T \in KKM^*(X, X)$ is a k-set contraction map, $0 < k < 1$ with $\overline{T(X)} \subset X$.

(ii) for any $x \in X$, $H(x)$ is compactly open in X, and

(iii) for the precompact-inducing nearly-convex subset X_∞ of X, $\overline{T(X_\infty)} \subset H(X_\infty)$,

then the precompact-inducing nearly-convex subset X_∞ of X satisfies the following condition:

$$T(X_\infty) \cap (\cap \{H(x) : x \in M\}) \neq \phi,$$

for some $M \in \langle X_\infty \rangle$.

Proof, Let $N = \{U_i : i \in I\}$ be a local base of E such that U_i is symmetric and open for each $i \in I$. And, by the same process of the proof of Theorem 2, we get a compact subset $\overline{T(X_\infty)}$ of X, and $T|_{X_\infty} \in KKM^*(X_\infty, X)$, since $T \in KKM^*(X, X)$.

We claim that there exists $M \in \langle X_\infty \rangle$ such that $T(X_\infty) \cap (\cap \{H(x) : x \in M\}) \neq \phi$. On the contrary, assume that $T(X_\infty) \cap (\cap \{H(x) : x \in M\}) = \phi$ for any $M \in \langle X_\infty \rangle$, then $T(X_\infty) \subset \cap_{x \in M} H^c(x)$. Since X_∞ is nearly-convex, hence for any $V \in \mathcal{N}$, there exists a continuous convex-inducing mapping $h_{M,V} : M \to X_\infty$ such that $\text{co}(h_{M,V}(M)) \subset X_\infty$. So $T(\text{co}(h_{M,V}(M))) \subset T(X_\infty) \subset \cap_{x \in M} H^c(x)$. This implies H^c is a generalized KKM^* mapping with respect to T. By (ii), for any $x \in X$, $H^c(x)$ is compactly closed in X. Follows Theorem 5, we have $\overline{T(X_\infty)} \cap (\cap \{H^c(x) : x \in X_\infty\}) \neq \phi$, which implies $\overline{T(X_\infty)} \notin \cup_{x \in X_\infty} H(x)$, a contradiction to (iii). We complete the proof. □

Corollary 7 Let X be a nonempty bounded convex subset of a Hausdorff topological vector space E. If $T, H : X \to 2^X$ are two set-valued mappings satisfying the following:

(i) $T \in KKM(X, X)$ is a k-set contraction map, $0 < k < 1$ with $\overline{T(X)} \subset X$,

(ii) for any $x \in X$, $H(x)$ is compactly open in X, and

(iii) for the precompact-inducing convex subset X_∞ of X, $\overline{T(X_\infty)} \subset H(X_\infty)$,

then the precompact-inducing convex subset X_∞ of X satisfies the following condition:

$$T(X_\infty) \cap (\cap \{H(x) : x \in M\}) \neq \phi,$$ for some $M \in \langle X_\infty \rangle$.

As a consequence of the above Corollary 6, we have the following generalized variational inequality.

Theorem 7 Let X be a nonempty bounded convex subset of a Hausdorff topological vector space E, and let $T \in KKM^*(X, X)$ be a k-set contraction map, $0 < k < 1$ with $\overline{T(X)} \subset X$. If $\varphi, \psi : X \times X \to (-\infty, \infty)$ are two real-valued mappings satisfying the following:
(i) \(\psi(x,y) \leq 0 \), for each \((x,y) \in G_T\),
(ii) for fixed \(x \in X \), the mapping \(y \mapsto \varphi(x,y) \) is lower semicontinuous on \(K \) for each compact subset \(K \) of \(X \), and
(iii) for fixed \(y \in X \), the set \(\{ x \in X : \psi(x,y) > 0 \} \) contains the convex hull of the set \(\{ x \in X : \varphi(x,y) > 0 \} \)

then for the precompact-inducing convex subset \(X_\infty \) of \(X \), there exists an \(\overline{y} \in X_\infty \) such that

\[\varphi(x, \overline{y}) \leq 0 \] for each \(x \in X_\infty \).

Proof, Define \(F, S : X \to 2^X \) by

\[S(x) = \{ y \in X : \psi(x,y) \leq 0 \} \] for each \(x \in X \), and
\[F(x) = \{ y \in X : \varphi(x,y) \leq 0 \} \] for each \(x \in X \).

By assumption (i), we have \(G_T \subset G_S \), and by assumption (ii), \(F(x) \) is comapctly closed for each \(x \in X \). The condition (iii) implies that for each finite subset \(A \) of \(X \), \(S(co(A)) \subset F(A) \), and then \(T(co(A)) \subset F(A) \), that is; \(F \) is a generalized KKM mapping with respect to \(T \).

So, all the conditions in Corollary 6 are satisfied, and so for the precompact-inducing convex subset \(X_\infty \) of \(X \), we have that \(\overline{T(X_\infty)} \cap (\bigcap \{ F(x) : x \in X_\infty \}) \neq \emptyset \). Let \(\overline{y} \in \overline{T(Y)} \cap (\bigcap \{ F(x) : x \in Y \}) \), and hence we have \(\varphi(x, \overline{y}) \leq 0 \) for each \(x \in Y \). \(\square \)

References

Received: September 4, 2006