Generalized Matrix Near Ring
over Abstract Affine Near Ring

A. Y. Abdelwanis

Department of Mathematics, Faculty of Science
Cairo University, Giza, Egypt
ahmedyones2@yahoo.com

Abstract. Let A be an abstract affine near ring, M be a faithful near ring A–module and n be a positive integer. In this paper we define the $n \times n$ generalized matrix near ring over A using the faithful near ring A–module M which is denoted by $\text{Mat}_n(A, M)$. Also we find a necessary and sufficient condition for which $\text{Mat}_n(A, M)$ is an abstract affine near ring.

Mathematics Subject Classification: 16Y30

Keywords: Generalized Matrix Near Ring, abstract affine near ring

1. Introduction

The theory of near-rings is presented in[3]. We recall some concepts of this theory. Let $A = (A, +, \cdot)$ be an abstract affine near-ring (a.a.n.r for short), i.e. $(A, +)$ is an abelian group, (A, \cdot) is a semigroup, $(a + b) \cdot c = a \cdot c + b \cdot c$, for all $a, b, c \in A$, and $A_0 = A_d$, where $A_0 = \{a \in A : a \cdot 0 = 0\}$ is the zero symmetric part and $A_d = \{a \in A : a \cdot (x + y) = a \cdot x + a \cdot y, \text{for all } x, y \in A\}$ is the distributive part. Let R be a ring and M a left R–module. By [3, Prop.9.81] there is exactly one way to extend the multiplication $\cdot : R \times M \to M$ to a multiplication ”\circ” in $(A, +) = (R, +) \oplus (M, +)$ such that $(A, +, \circ)$ is a near-ring with $A_d = A_0 = R \oplus (0)$ and $A_c = (0) \oplus M$, namely $(r, m) \circ (s, n) = (r \cdot s, r \cdot n + m)$. Moreover, $A = (A, +, \circ)$ is an aann and all aann’s arise in this way. This aann will be denoted by $R \ast M$.

Conversely, for any aann A, the zero symmetric part A_0 is a ring and the constant part $A_c = \{a \in A : a \cdot x = a, \text{for all } x \in A\}$ is a left module over A_0.

Let A be an abstract affine near ring, N be a faithful near ring A–module and n be a positive integer. In this paper we define the $n \times n$ generalized matrix near ring over A using the faithful near ring A–module N which is denoted by $\text{Mat}_n(A, M)$ as the direct sum of the two near rings $\text{Mat}_n(A_0, N)$ and $\text{Mat}_n(A_d, M)$.

and A^n_c, where $\text{Mat}_n(A_0, N)$ is the generalized matrix near ring as in [2], A^n_c is the direct sum of n copies of A_c which is a near ring under component wise addition and multiplication.

It is clearly that the direct sum of two right near rings S, D which is denoted by $S \oplus D$ is a right near ring under component wise addition and multiplication.

In the following \oplus means direct sum, this lemma is important in our work

Lemma 1.1

Let S_1 and D_1 are right zero symmetric near rings and they are isomorphic (i.e $S_1 \cong D_1$), S_2 and D_2 are right constant near rings and isomorphic (i.e $S_2 \cong D_2$), then $S = S_1 \oplus S_2, D = D_1 \oplus D_2$ are isomorphic (i.e $S \cong D$).

Proof

Let $f_1 : S_1 \to D_1, f_2 : S_2 \to D_2$ are isomorphisms. Define $f : S \to D$, by $f(s_1, s_2) = (f_1(s_1), f_2(s_2))$.

It is clearly that f is an isomorphism.

From [3] if $A = R \ast M$ be an abstract affine near-ring and $n > 1$ be a natural number. Then $M_n(R \ast M) \cong M_n(R) \ast M^n$.

In this paper we extend this to define the generalized matrix near ring $M_n(A, M)$ when A is an abstract affine near ring.

2. Notations and Definitions

If A is a right near ring with identity, n be any positive integer. In 1986 J.D.P. Meldrum and A.P.J. Van der Walt define Matrix near ring over A, $\text{Mat}_n(A)$, regards A as a left module over A. In [2] A denote a right, zero symmetric near ring with identity, M be a faithful left A–module, $(M, +)$ need not be a belian group and M^n is the direct sum of n copies of M, also a faithful left A–module.

Kirby C. Smith in [2] define the $n \times n$ generalized matrix near ring over A using the faithful left A–module M as the subnear ring $M_n(A, M)$ of $M_0(M^n)$ generated by $f^r_{ij}, r \in R$ and $1 \leq i, j \leq n$, where the generalized $n \times n$ matrix near ring will be a function from M^n to M^n. Now we define special functions in $M_0(M^n)$ will be denoted by $f^r_{ij}, r \in A$ and $1 \leq i, j \leq n$

$$f^r_{ij} : M^n \to M^n \text{ such that } r \in A \text{ and } 1 \leq i, j \leq n,$$

$$f^r_{ij}(a_1, ..., a_k) = (0, ..., 0, ra_j, 0, ..., 0) \text{ where } ra_j \text{ in the } i-th \text{ position},$$

$$(a_1, ..., a_k) \in M^n \text{ and } f^r_{ij} = l_i f^r_{ij} \pi_j \text{ where } l_i : M \to M^n \text{is the } i-th \text{ injection, }\pi_j : M^n \to M \text{ is the } j-th \text{ projection and } f^r : M \to M \text{ such that } f^r(s) = rs \forall s \in M,$$

So f^r_{ij} is the function from M^n to M^n that takes a n–tuple with entries from M, multiplies the j–th entry a_j by r using the module action of R on M, puts the result ra_j into the i–th position and puts 0 in the other positions. We may sometimes write f^r_{ij} as $[r; i, j]$.
3. Main Results

Definition 3.1
Let A be any abstract affine near ring, N be a faithful A--module then generalized matrix near ring with respect to A and N which is denoted by $\text{Mat}_n(A, N)$ is the direct sum of $\text{Mat}_n(A_0, N)$ and A^n_c i.e

$$\text{Mat}_n(A, N) = \text{Mat}_n(A_0, N) \oplus A^n_c$$

In the following $A = A_0 \ast A_c$ be any abstract affine near ring, N, M are faithful A--modules, n be a positive integer

Lemma 3.2

$$\text{Mat}_1(A, N) \cong A \cong \text{Mat}_1(A)$$

Proof
We have

$$\text{Mat}_1(A, N) = \text{Mat}_1(A_0, N) \oplus A_c$$

but also we have

$$\text{Mat}_1(A_0, N) \cong \text{Mat}_1(A_0) \cong A_0$$

and

$$A_c \cong \text{Mat}_1(A_c).$$

So by lemma 1.1

$$\text{Mat}_1(A, N) = \text{Mat}_1(A_0, N) \oplus A_c \cong A_0 \oplus A_c = A$$

$$\cong \text{Mat}_1(A_0) \oplus \text{Mat}_1(A_c) = \text{Mat}_1(A).$$

Theorem 3.3
If $\theta : M \rightarrow N$ is an A--epimorphism, then θ induces a near ring epimorphism from $\text{Mat}_n(A; M)$ into $\text{Mat}_n(A; N)$. So if N is a homomorphic image of M, then the matrix near ring $\text{Mat}_n(A; N)$ is a homomorphic image of $\text{Mat}_n(A; M)$.

Proof
Since M, N are faithful A--modules so M, N are faithful A_0--modules and so we have

$$\text{Mat}_n(A, M) = \text{Mat}_n(A_0, M) \oplus A^n_c$$

$$\text{Mat}_n(A, N) = \text{Mat}_n(A_0, N) \oplus A^n_c.$$

But from [2, Theorem1] we have $\text{Mat}_n(A_0; N)$ is a homomorphic image of $\text{Mat}_n(A_0; M)$.

So

$$\text{Mat}_n(A, M) = \text{Mat}_n(A_0, M) \oplus A^n_c$$

is a homomorphic image of $\text{Mat}_n(A, N) = \text{Mat}_n(A_0, N) \oplus A^n_c$.

Corollary 3.4
Let M be a homomorphic image of $A A$. Then $\text{Mat}_n(A; M)$ is isomorphic to $\text{Mat}_n(A; A)$ for all $n \geq 1$.

Proof
Since M is a faithful A--module which is a homomorphic image of $A A$ so M
be a faithful A_0—module which is a homomorphic image of $A_0 A_0$. Then from [2,Corollary1]
$$M_n(A_0, M) \cong M_n(A_0, A_0)$$
and so
$$M_n(A; M) = M_n(A_0, M) \oplus A^n_c$$
$$\cong M_n(A_0, A_0) \oplus A^n_c$$
$$\cong M_n(A_0) \oplus A^n_c$$
$$\cong M_n(A)$$

Corollary 3.5
If M and N are isomorphic faithful A—modules, then
$$M_n(A; M) \simeq M_n(A; N)$$
for all $n \geq 1$.

Proof
Since M and N are isomorphic faithful A—modules, then M and N are isomorphic faithful A_0—modules and so from [2,Corollary2]
$$M_n(A_0; M) \simeq M_n(A_0; N)$$
for all $n \geq 1$.

Now for all $n \geq 1$
$$M_n(A; M) = M_n(A_0; M) \oplus A^n_c$$
$$\cong M_n(A_0; N) \oplus A^n_c$$
$$= M_n(A_0; N).$$

Lemma 3.6
$$M_n(A_0, A) \cong M_n(A_0, A_0)$$

Proof
From [2, Corollary1] since A is a modul over A_0 under the usual multiplication and is a homomorphic image of the module A_0 over A_0.

Proposition 3.7
$$M_n(A, A) \cong M_n(A)$$

Proof
$$M_n(A, A) = M_n(A_0, A) \oplus A^n_c$$
$$\cong M_n(A_0, A_0) \oplus A^n_c$$
$$\cong M_n(A_0) \oplus A^n_c$$
$$\cong M_n(A)$$
Lemma 3.8

\[(M_n(A, M))_d \cong M_n(A_d, M)\]

Proof

Since \(A_d\) is embeded in \(A\) then \(M_n(A_d, M)\) is embeded in \(M_n(A, M)\) i.e

\[M_n(A_d, M) \hookrightarrow M_n(A, M)\]

so

\[(M_n(A_d, M))_d \hookrightarrow (M_n(A, M))_d .\]

But \(M_n(A_d, M)\) is distributive so \((M_n(A_d, M))_d = M_n(A_d, M)\) which implies that

\[M_n(A_d, M) \hookrightarrow (M_n(A, M))_d .\]

But there is a one to one correspondence between the set of generators of \((\text{Mat}_n(A, M))_d\) and the set of generators of \(\text{Mat}_n(A_d, M)\) because \((M_n(A, M))_d\) is embeded in the the zero-symmetric part of \(M_n(A, M)\) and we have

\[(f_{ij}^r, 0) \in (M_n(A, M))_d \text{ iff } r \in A_d.\]

So

\[(M_n(A, M))_d \cong \text{Mat}_n(A_d, M).\]

We use lemma 3.8 to proof the following theorem which gives a necessary and sufficient condition for which \(\text{Mat}_n(A, M)\) is an abstract affine near ring.

Theorem 3.9

\(M_n(A_0*A_c, N)\) is abstract affine near ring (a.a.n.r for short) iff \(N\) is a ring \(A_0\)–module

Proof

\((\Rightarrow)\) Let \(M_n(A_0 * A_c, N)\) is an a.a.n.r then we have \(M_n(A_0 * A_c, N)\) is abelian and so \(N\) is abelian (1). We show that

\[\forall r \in A_0, \forall l, m \in N \quad r(l + m) = rl + rm.\]

Since\(M_n(A_0*A_c, N)\) is an a.a.n.r then \((M_n(A_0*A_c, N))_0 = (\text{Mat}_n(A_0*A_c, N))_d\)

and so we have if \(r \in A_0, 1 \leq i, j, k, h \leq n\)

\[(f_{ij}^r, 0)((f_{jk}^1, 0) + (f_{jh}^1, 0)) = (f_{ij}^r, 0)(f_{jk}^1, 0) + (f_{ij}^r, 0)(f_{jh}^1, 0)\]

so if \(n_k = m, n_h = l \in N\) then

\[(f_{ij}^r, 0)((f_{jk}^1, 0) + (f_{jh}^1, 0))(0, ..., m, 0, ..., l, 0, ..., 0) =\]

\[(f_{ij}^r, 0)(f_{jk}^1, 0) + (f_{ij}^r, 0)(f_{jh}^1, 0))(0, ..., m, 0, ..., l, 0, ..., 0)\]

so

\[(f_{ij}^r, 0)(0, ..., m + l, 0, ..., 0) = (f_{ij}^r, 0)(0, ..., m, 0, ..., 0) + (f_{ij}^r, 0)(0, ..., l, 0, ..., 0)\]
then
\[r(m + l) = rm + rl \quad (2) \]
so from (1),(2) we have \(N \) is a ring \(A_0 \)--module.

\((\Leftarrow)\) Let \(N \) be a ring \(A_0 \)--module we have \(M_n(A_0 \ast A_c, N) \) is the direct sum of \(M_n(A_0 \oplus \{0\}, N), A^n_c \) i.e
\[M_n(A_0 \ast A_c, N) = M_n(A_0, N) \oplus A^n_c. \]
Since \(A_0, N \) are abelian so \(M_n(A_0, N) \) is abelian also \(A^n_c \) is abelian since \(A_c \) is a belian then \(M_n(A_0 \ast A_c, N) \) is abelian \((1)\). Also from lemma 3.8 we have
\[(M_n(A_0 \ast A_c, N))_d \cong M_n((A_0 \ast A_c)_d, N)) = M_n(A_0, N) \quad (2) \]
\(M_n(A_0 \ast A_c, N) \) is a.a.n.r.

REFERENCES

Received: December, 2011