Orthogonal Derivations on an Ideal
of Semiprime Γ-Rings

Nishteman N. Suliman

Department of Mathematics
College of Education, Scientific Departments
Salahaddin University – Kurdistan Region – Erbil, Iraq
vananesh@gmail.com

Abdul-Rahman H. Majeed

Baghdad University/College of Science
Department of Mathematics, Iraq
ahmajeed@yahoo.com

Abstract

In this paper, we generalized some results concerning orthogonal derivations for a nonzero ideal of a semiprime Γ-ring. These results which are related to some results concerning product derivations on a Γ-rings.

Mathematics Subject Classification: 16W25, 16Y30

Keywords: Semiprime Γ-rings, derivations, orthogonal derivations.

1. Introduction

Nobusawa [5] introduced the notion of a Γ-ring, more general than a ring. Burnes [2] weakened the conditions in the definition of Γ-ring in the sense of Nobusawa. After these two authors, many mathematicians made works on Γ-ring in the sense of Barnes and Nobusawa, which are parallel to the results in the ring theory.

The gamma ring is defined by Barnes in [2] as follows:
A Γ-ring is a pair \((M, \Gamma)\) where \(M\) and \(\Gamma\) are additive abelian groups for which there exists a map from \(M \times \Gamma \times M \to M\) (the image of \((x, \alpha, y)\) was denoted by \(x\alpha y\)) for all \(x, y, z \in M\) and \(\alpha \in \Gamma\) satisfying the following conditions:

(i) \(x\alpha y \in M\)
(ii) \((x + y)\alpha z = x\alpha z + y\alpha z\),
\[x(\alpha + \beta)y = x\alpha y + x\beta y, \]
\[xa(y + z) = x\alpha y + x\alpha z, \]
(iii) \((x\alpha y)\beta z = x\alpha (y\beta z)\).

We may note that it follows from (i)→(iii) that \(0\alpha x = x0y = 0\alpha x = 0\), for all \(x, y \in M\) and \(\alpha \in \Gamma\).

A Γ-ring \(M\) is said to be 2-torsion free if \(2x = 0\) implies \(x = 0\) for \(x \in M\). \(M\) is called a prime if for any two elements \(x, y \in M\), \(x\Gamma M \subseteq y \Gamma M \subseteq M\) implies \(x = 0\) or \(y = 0\), and \(M\) is called semiprime if \(x\Gamma M \subseteq x = 0\) with \(x \in M\) implies \(x = 0\). Note that every prime Γ-ring is obviously semiprime. An additive subgroup \(U\) of \(M\) is called a left (right) ideal of \(M\) if \(M \Gamma U \subseteq U\) (\(U \Gamma M \subseteq U\)). If \(U\) is both left and right ideal of \(M\), then we say \(U\) is an ideal of \(M\). Following [6] a subset \(U\) of \(M\), \(\text{Ann}_\Gamma(U) = \{a \in M\ | a\Gamma U = \langle 0 \rangle \}\) is called the left annihilator of \(U\). A right annihilator \(\text{Ann}_r(U)\) can be defined similarly. It is known that the right and left annihilators of an ideal \(U\) of a semiprime Γ-ring \(M\) coincide, it will be denoted by \(\text{Ann}(U)\). Not that \(U \cap \text{Ann}(U) = \{0\}\) \((U \cap \text{Ann}_r(U) = \{0\})\). Jing in [4], defined the derivation of Γ-ring as follows: An additive mapping \(d: M \to M\) is called a derivation if \(d(x\alpha y) = d(x)\alpha y + x\alpha d(y)\) for all \(x, y \in M\) and \(\alpha \in \Gamma\).

Beršar and Vukman in [3] introduced the notion of orthogonality for a pair of derivations \((d, g)\) of a semiprime ring, and they gave several necessary and sufficient conditions for \(d, g\) to be orthogonal on a semiprime Γ-ring. Ashraf and Jamal in [1] they study the concepts of orthogonal derivation in Γ-ring \(M\) as follows: Two mappings \(f\) and \(g\) of a Γ-ring \(M\) are said to be orthogonal on \(M\) if

\[f(x)\Gamma M \Gamma g(y) = 0 = g(y)\Gamma M \Gamma f(x) \]
for all \(x, y \in M\) and \(\alpha \in \Gamma\),

and obtained some results analogous to obtained by Beršar and Vukman [3].

In this paper we extend the results Ashraf and Jamal in [1] to orthogonal derivation on a nonzero ideal of semiprime Γ-ring \(M\) and \(M\) satisfying \(x\alpha y\beta z = x\beta y\alpha z\), for all \(x, y, z \in M\) and \(\alpha, \beta \in \Gamma\), and it will be represented by \((*)\).
2. The Results

To prove the main result we need the following lemmas.

Lemma 2.1. Let M be a 2-torsion free semiprime Γ-ring, U a nonzero ideal of M and a, b the elements of M. Then the following conditions are equivalent:

(i) $a\Gamma U \Gamma b = (0)$

(ii) $b\Gamma U \Gamma a = (0)$

(iii) $a\Gamma U \Gamma b + b\Gamma U \Gamma a = (0)$

If one of these conditions are satisfying and Ann$_l(U) = 0$, then $a\Gamma b = b\Gamma a = 0$.

Proof. (i)\rightarrow(ii) Suppose that $a\Gamma U \Gamma b = 0$. Then

$b\Gamma U \Gamma a = 0$, since U is an ideal then $b\Gamma U \Gamma a \Gamma U = 0$.

By semiprimeness, $b\Gamma U \Gamma a = 0$, hence $b\Gamma U \Gamma a \in \text{Ann}_l(U) = 0$, we get $b\Gamma U \Gamma a = 0$.

(ii)\rightarrow(iii) Suppose that $b\Gamma U \Gamma a = 0$, that is $a\Gamma U \Gamma b = 0$, this implies $a\Gamma U \Gamma b + b\Gamma U \Gamma a = 0$.

(iii)\rightarrow(i) Suppose that $a\Gamma U \Gamma b + b\Gamma U \Gamma a = 0$, that is $a\Gamma U \Gamma b = -b\Gamma U \Gamma a$.

Let u and v be any two elements of U. Then by hypotheses we have

$$(a\Gamma u \Gamma b) \Gamma v \Gamma (a\Gamma u \Gamma b) = - a\Gamma u \Gamma a \Gamma v \Gamma b \Gamma u \Gamma b$$

$$= a\Gamma u \Gamma b \Gamma v \Gamma (b \Gamma u \Gamma a)$$

$$= - a\Gamma u \Gamma b \Gamma v \Gamma a \Gamma u \Gamma b$$

This implies $2(a\Gamma u \Gamma b) \Gamma v \Gamma (a\Gamma u \Gamma b) = 0$.

Since M 2-torsion free Γ-ring, we obtain $(a\Gamma u \Gamma b) \Gamma v \Gamma (a\Gamma u \Gamma b) = 0$.

Since U be an ideal, then $(a\Gamma u \Gamma b) \Gamma U = 0$. By the semiprimeness we get $(a\Gamma u \Gamma b) \Gamma U = 0$, hence $a\Gamma u \Gamma b \in \text{Ann}_l(U) = 0$, $a\Gamma u \Gamma b = 0$. For all $u \in U$. Hence we get $a\Gamma u \Gamma b = b\Gamma u \Gamma a = 0$.

Lemma 2.2. Let M be a 2-torsion free semiprime Γ-ring, and U be a nonzero ideal of M such that Ann$_l(U) = 0$. Suppose that additive mappings f and h of M into itself satisfy $f(x)\Gamma U \Gamma h(x) = (0)$ for all $x \in U$. Then $f(x)\Gamma U \Gamma h(y) = (0)$ for all $x, y \in U$.

Proof. Suppose that $f(x)\alpha \Gamma U \Gamma h(x) = 0$ for all $x, u \in U$ and $\alpha, \beta \in \Gamma$. Linearizing we get

$$f(x)\alpha \Gamma U \Gamma h(x) + f(y)\alpha \Gamma U \Gamma h(x) = 0$$

for all $x, y, u \in U$ and $\alpha, \beta \in \Gamma$.

Then we have
Replacing \(v \) by \(v_{\tau} \), we get

\[
f(x)^{\alpha}u^{\beta}h(y)^{\gamma}v^{\tau}m = 0,
\]
for all \(x, y, u, v \in U \) and \(\alpha, \beta, \gamma, \delta, \tau \in \Gamma \).

By semiprimeness we obtain \(f(x)^{\alpha}u^{\beta}h(y)^{\gamma}v = 0 \), that is \(f(x)^{\alpha}u^{\beta}h(y) \in \text{Ann}(U) = 0 \), this implies \(f(x)^{\alpha}u^{\beta}h(y) = 0 \), for all \(x, y, u \in U \) and \(\alpha, \beta \in \Gamma \).

Lemma 2.3. Let \(M \) be a 2-torsion free semiprime \(\Gamma \)-ring, \(d \) and \(g \) be derivations of \(M \), and \(U \) be a nonzero ideal of \(M \) such that \(\text{Ann}(U) = 0 \). If \(d(x)^{\alpha}g(y) + g(x)^{\alpha}d(y) = 0 \) for all \(x, y \in U \) and \(\alpha \in \Gamma \), then \(d \) and \(g \) are orthogonal.

Proof. Suppose that \(d(x)^{\alpha}g(y) + g(x)^{\alpha}d(y) = 0 \) for all \(x, y \in U \) and \(\alpha \in \Gamma \). Replacing \(y \) by \(y^{\beta}m \) we get

\[
0 = d(x)^{\alpha}g(y^{\beta}m) + g(x)^{\alpha}d(y^{\beta}m)
\]
\[
= d(x)^{\alpha}g(y)^{\beta}m + d(x)^{\alpha}y^{\beta}g(m) + g(x)^{\alpha}d(y)^{\beta}m + g(x)^{\alpha}y^{\beta}d(m)
\]
\[
= d(x)^{\alpha}y^{\beta}g(m) + g(x)^{\alpha}y^{\beta}d(m), \text{ for all } x, y \in U, m \in M \text{ and } \alpha \in \Gamma.
\]

Replacing \(x \) by \(mx \) we get

\[
0 = d(mx)^{\alpha}y^{\beta}g(m) + g(mx)^{\alpha}y^{\beta}d(m)
\]
\[
= d(mx)^{\alpha}y^{\beta}g(m) + m^{\gamma}d(x)^{\alpha}y^{\beta}g(m) + g(m)^{\gamma}x^{\alpha}y^{\beta}d(m) + m^{\gamma}g(x)^{\alpha}y^{\beta}d(m)
\]
\[
= d(mx)^{\alpha}y^{\beta}g(m) + g(m)^{\gamma}x^{\alpha}y^{\beta}d(m), \text{ for all } x, y \in U, m \in M \text{ and } \alpha, \beta, \gamma \in \Gamma.
\]

Since \(x^{\alpha}y^{\beta}g(m) \in U \). Put \(u = x^{\alpha}y^{\beta}g(m) \), then by Lemma 2.1 we get \(d(m)^{\gamma}u^{\beta}g(m) = 0 \). By Lemma 2.2 yield \(d(m)^{\gamma}u^{\beta}g(s) = 0 \), for all \(u \in U, m, s \in M \) and \(\beta, \gamma \in \Gamma \). Replacing \(u \) by \(t \), we have \(d(m)^{\gamma}t^{\beta}g(s) = 0 \). Replacing \(u \) by \(ur \) we have \(d(m)^{\gamma}t^{\beta}g(s) = 0 \). By semiprimeness and (*) we get \(d(m)^{\gamma}t^{\beta}g(s) = 0 \), for all \(m, s, t \in M \) and \(\gamma \in \Gamma \). Hence \(d \) and \(g \) are orthogonal.

Theorem 2.4. [1, Theorem 2.1] Let \(M \) be a 2-torsion free semiprime \(\Gamma \)-ring. Suppose \(d \) and \(g \) are derivations of \(M \). Then the following conditions are equivalent:

(i) \(d \) and \(g \) are orthogonal.
(ii) \(dg = 0 \).
(iii) \(dg + gd = 0 \).
(iv) \(\text{dg} \) is a derivation.
(v) there exists \(a, b \in M \) and \(\alpha, \beta \in \Gamma \) such that \((\text{dg})(x) = a\beta x + x\gamma b \).

Now we prove the main result.

Theorem 2.5. Let \(M \) be a 2-torsion free semiprime \(\Gamma \)-ring, \(d \) and \(g \) are derivations of \(M \), and \(U \) be a nonzero ideal of \(M \) such that \(\text{Ann}_l(U) = 0 \). Then the following conditions are equivalent:

(i) \(d \) and \(g \) are orthogonal of \(M \).
(ii) \(dg = 0 \) on \(U \).
(iii) \(dg + gd = 0 \) on \(U \).
(iv) \(\text{dg} \) is a derivation on \(U \).
(v) there exists \(a, b \in M \) and \(\alpha, \beta \in \Gamma \) such that \((\text{dg})(x) = a\beta x + x\gamma b \), for all \(x \in U \).

Proof. (i) \(\rightarrow \) (ii), (iii), (iv)and (v) are clear by Theorem 2.4.

(ii)\(\rightarrow \) (i) Suppose that \(\text{dg} = 0 \) on \(U \), that is \(\text{dg}(x) = 0 \), for all \(x \in U \).
Replacing \(x \) by \(x\alpha m \), we get

\[
0 = d(g(x)\alpha m + x\alpha g(m))
\]
\[
= d(g(x))\alpha m + g(x)d(\alpha m) + d(x)\alpha g(m) + x\alpha d(g(m))
\]
\[
= g(x)d(\alpha m) + d(x)\alpha g(m) + x\alpha d(g(m))
\]
Replacing \(x \) by \(m\beta x \), we get

\[
0 = g(m)\beta x\alpha d(m) + m\beta g(x)\alpha d(m) + d(m)\beta x\alpha g(m) + m\beta d(x)\alpha g(m) + m\beta x\alpha d(g(m))
\]
\[
= g(m)\beta x\alpha d(m) + d(m)\beta x\alpha g(m)
\]

By Lemma 2.1 we have \(g(m)\beta x\alpha d(m) = 0 \). By Lemma 2.2 we get \(g(m)\beta x\alpha d(s) = 0 \), for all \(x \in U \), \(m, s \in M \) and \(\alpha, \beta \in \Gamma \). Replacing \(x \) by \(t\alpha d(s) \gamma x \alpha \), we get

\[
g(m)\beta t\alpha d(s)\gamma x \alpha \delta g(m)\beta t\alpha d(s) = 0
\]

By semiprimeness we obtain \(g(m)\beta t\alpha d(s)\gamma x = 0 \), for all \(x \in U \), \(m, s, t \in M \) and \(\alpha, \beta, \gamma, \delta, \lambda \in \Gamma \). Hence \(d \) and \(g \) are orthogonal.

(iii) \(\rightarrow \) (i) Suppose that \(\text{dg} + gd = 0 \), that is \((\text{dg} + gd)(x) = 0 \) for all \(x \in U \).
Replacing \(x \) by \(x\alpha m \), we obtain
\[0 = d(g(x)am + xag(m)) + g(d(x)am + xad(m)) \]
\[= d(g(x))am + d(x)ag(m) + xad(g(m)) + g(d(x))am + d(x)ag(m) + g(x)ad(m) + xag(d(m)) \]
\[= 2d(x)ag(m) + 2g(x)ad(m) + x\{d(g(m)) + g(d(m))\} \]

Replacing \(x \) by \(m^\beta x \) we get
\[0 = 2\{d(m^\beta x)ag(m) + m^\beta d(x)ag(m) + g(m^\beta x)ad(m) + m^\beta g(x)ad(m)\} + m^\beta x\{d(g(m)) + g(d(m))\} \]
\[= 2\{d(m)\beta xag(m) + g(m)\beta xad(m)\} \]

Since \(M \) is \(2 \)-torsion free \(\Gamma \)-ring, we have
\[d(m)\beta xag(m) + g(m)\beta xad(m) = 0, \text{ for all } x \in U, m \in M \text{ and } \alpha, \beta \in \Gamma. \]

By Lemma 2.1 we get \(d(m)\beta xag(m) = 0 \). By Lemma 2.2 we get \(d(m)\beta xag(s) = 0 \), for all \(m, s \in M \) and \(\alpha, \beta \in \Gamma \). Replacing \(x \) by \(t^\gamma x^\delta d(m)\beta t \) we have
\[d(m)\beta t\gamma x^\delta d(m)\beta x\delta (m)\beta t\gamma d(s) = 0. \]
Replacing \(x \) by \(x^\lambda r \), we get
\[d(m)\beta t\gamma x^\delta d(m)\beta t\gamma d(s) = 0, \text{ for all } x \in U, m, s \in M \text{ and } \alpha, \beta, \gamma, \delta, \lambda \in \Gamma. \]

By semiprimeness we obtain \(d(m)\beta t\gamma x^\delta d(m)\beta t\gamma d(s) = 0, \text{ for all } m, s, t \in M \text{ and } \alpha, \beta \in \Gamma. \) Hence \(d \) and \(g \) are orthogonal.

(iv) \(\leftrightarrow \) (i) Suppose that \(dg \) is derivation from \(U \) to \(M \), we have
\[dg(xay) = d(g(x))ay + x^\beta d(g(y)), \text{ for all } x, y \in U \text{ and } \alpha \in \Gamma. \]
(2.1)

In other hand
\[dg(xay) = d(g(x))ay + g(x)ad(y) + d(x)ag(y) + x^\beta d(g(y)) \]
(2.2)

Comparing (2.1) and (2.2) we get
\[d(x)ag(y) + g(x)ad(y) = 0, \text{ for all } x, y \in U \text{ and } \alpha \in \Gamma \]

Hence by Lemma 2.3 we get \(d \) and \(g \) are orthogonal.

(v) \(\rightarrow \) (i) Suppose that there exists \(a, b \in M \) and \(\beta, \gamma \in \Gamma \) such that \(dg(x) = a^\beta x + x^\gamma b \). Replacing \(x \) by \(xam \) we get
\[dg(xam) = d(g(x)am + xag(m)) \]
Orthogonal derivations on ideal

\[a\beta x\alpha m + x\alpha m\gamma b = dg(x)\alpha m + d(x)\alpha g(m) + x\alpha dg(m) \]
\[a\beta x\alpha m + x\alpha m\gamma b = a\beta x\alpha m + xybam + g(x)\alpha d(m) + d(x)ag(m) + x\alpha dg(m), \] that is
\[x\gamma bam + g(x)\alpha d(m) + d(x)\alpha g(m) + x\alpha dg(m) \]
\[- x\alpha m\gamma b = 0. \]

Replacing \(x \) by \(m\delta x \) we get
\[m\delta x\gamma bam + g(m)\delta x\alpha d(m) + m\delta g(x)\alpha d(m) + m\delta x\alpha dg(m) +
\[m\delta x\alpha dg(m) - m\delta x\alpha m\gamma b = 0. \]

Therefore
\[g(m)\delta x\alpha d(m) + d(m)\delta x\alpha g(m) = 0, \] for all \(x \in U \), \(m \in M \) and \(\alpha, \delta \in \Gamma \).

By Lemma 2.1 we have \(g(m)\beta x\alpha d(m) = 0 \). By Lemma 2.2 we get \(g(m)\beta x\alpha d(s) = 0 \), for all \(x \in U \), \(m, s \in M \) and \(\alpha, \beta \in \Gamma \). Replacing \(x \) by \(t\alpha d(s)\gamma x\delta g(m)\beta t \) we have
\[g(m)\beta t\alpha d(s)\gamma x\delta g(m)\beta t d(s) = 0. \]
Replacing \(x \) by \(x\alpha r \), we get
\[g(m)\beta t\alpha d(s)\gamma x\alpha r\delta g(m)\beta t d(s)\gamma x = 0, \] for all \(x \in U \), \(m, s, t \in M \) and \(\alpha, \beta, \gamma, \delta, \lambda \in \Gamma \).

By semiprimeness we obtain \(g(m)\beta t\alpha d(s)\gamma x = 0 \), yields \(g(m)\beta t\alpha d(s) \in Ann_l(U) = 0 \), therefore \(g(m)\beta t\alpha d(s) = 0, \) for all \(m, s, t \in M \) and \(\alpha, \beta \in \Gamma \). Hence \(d \) and \(g \) are orthogonal.

Corollary 2.6. Let \(M \) be a 2-torsion free semiprime \(\Gamma \)-ring, \(d \) and \(g \) are derivations from \(U \) to \(M \), and \(U \) be a nonzero ideal such that \(Ann_l(U) = 0 \). If \(dg \) is derivation from \(U \) to \(M \). Then \(dg \) is derivation of \(M \).

Corollary 2.7. Let \(M \) be a 2-torsion free semiprime \(\Gamma \)-ring, \(d \) be a derivation from \(U \) to \(M \), and \(U \) be a nonzero ideal such that \(Ann_l(U) = 0 \). If \(d^2 \) is derivation, then \(d = 0 \).

Proof. Suppose that \(d^2 \) is derivation on \(U \), by Theorem 2.5 we get \(d \) and \(d \) are orthogonal. That is \(d(x)\Gamma M\Gamma d(x) = 0 \). Then by semiprimeness we get \(d = 0 \).

References

Received: December, 2011