Reformulation of Shapiro’s inequality

Tanfer Tanriverdi

Department of Mathematics, Harran University
Sanliurfa, 63300 Turkey
ttanriverdi@harran.edu.tr

Abstract

We reformulate Shapiro’s inequality with elementary mathematics and present some new Shapiro type inequalities by giving examples with an analytic proof.

Mathematics Subject Classification: 26D05, 26D15, 26D20

Keywords: Cyclic inequality, Shapiro’s inequality

1 Introduction

In 1954 H. S. Shapiro [1] conjectured that

\[E(x) = \sum_{k=1}^{n} \frac{x_k}{x_{k+1} + x_{k+2}} \geq \frac{n}{2} \quad (P(n)) \]

(1)

where \(x_k \geq 0, \ x_{k+1} + x_{k+2} > 0 \) and \(x_{n+k} = x_k \) for \(k \in \mathbb{N} \). Equality occurring only if all denominators are equal.

Studies on (1) have been based on counterexamples and analytic proofs have given for small \(n \) so far. It is conjectured that (1) is true for even \(n \leq 12 \) and false for even \(n \geq 14 \) and that it is true for odd \(n \leq 23 \) and false for odd \(n \geq 25 \).

We now give a brief history of attempts on conjecture. Let

\[\lambda(n) = \frac{1}{n} \inf_{x_1, x_2, \ldots, x_n} E(x). \quad \text{Then} \quad \lambda(n) \leq \frac{1}{2} \]

(2)

clearly. The case for \(n = 1, 2 \) is trivial.

Several authors [4] proved that (2) is true for \(n = 3, 4, 5, 6 \). Diananda [3] proved that (2) is true for \(n \leq 6 \) different from the previous ones. Mordell [4] conjectured that (1) is false for all \(n \geq 7 \), but later [5] proved that (1) is true for \(n = 7 \). Nortover [2], acknowledged assistance from M. J. Lighthill, gave a counterexample for \(n = 20 \).
In [2, 4, 5, 6, 9, 27], it was proved that (1) is false for all even \(n \geq 14 \) and this result was also credited to Herschorn and Peck [25]. Zulauf [7, 8] proved that (1) is false for even \(n \geq 14 \) and is false for odd \(n \geq 53 \). Dojokovic [9] proved that \(P(8) \) is true. Rankin [6] proved that the inequality (1) is false for large enough \(n \).

Diananda [10] proved that (i) if \(P(m) \) is true, where \(m \) is even, then \(p(n) \) is true for all \(n \leq m \), and (ii) if \(P(m) \) is false, where \(m \) is odd, then \(p(n) \) is false for all \(n \geq m \). In the same paper a counterexample for \(P(27) \) was given and thus (2) is false for all odd \(n \geq 27 \).

Nowosad [11] analytically proved that \(P(10) \) is true. Bushell and Craven [12] also analytically proved that \(P(10) \) is true and thus is true for all \(n \leq 10 \) and gave a counterexample for \(n = 25 \). Godunova and Levin [13] verified \(P(12) \) partly analytically and partly numerically.

Recently, Bushell and Mcleod [14] proved analytically that \(P(12) \) is true.

Rankin [6, 15] gave a lower bound for \(\lambda = \lambda(n)_{n \to \infty} \geq 0.3047 \) and \(\lambda = \lambda(n)_{n \to \infty} \geq 0.330232 \) respectively. Prior to Rankin’s result, the only lower bound was known [8] for \(\lambda(24) = 0.49950317 \). Diananda [16, 17] improved lower bounds, found by Rankin, to \(\lambda = \lambda(n)_{n \to \infty} \geq 0.457107 \) and \(\lambda = \lambda(n)_{n \to \infty} \geq 0.461238 \) respectively. Zulauf [8, 18] showed that \(\lambda \leq \lambda(24) < 0.49950317 \) later [17] improved to \(\lambda \leq \lambda(24) < 0.499197 \) and also gave a counterexample for \(n = 24 \). Baston [24] obtained a lower bound which is an improvement on Rankin’s original result [15].

Drinfeld [19] prove that \(\lambda = \lambda(n)_{n \to \infty} = 0.4945668 \). An analytic result for the same bound, with some difficulties mentioned, also occurred [20].

Malcolm [23] numerically gave a counterexample for \(n = 25 \), Daykin [26] numerically showed that (1) is false for \(n = 14, 16, 25, 27, 40, 41, 50, 51, 60, 61, 110, 111 \) and gave counterexamples for \(n = 25, 111 \) and also found that \(\lambda \leq \lambda(111) < 0.49656 \). Troesch [21, 22] numerically proved that \(P(13) \) and \(P(23) \) are true.

For more sophisticated analysis and a brief history on conjecture see [11, 14, 22, 27, 29].

2 Main Results

Set

\[
F(k) = \frac{x_k}{x_{k+1} + x_{k+2}} > 0, \quad (3)
\]

where \(k = 1, 2, \ldots, n \). Then one writes

\[
\prod_{k=1}^{n} F(k) = \frac{x_1 x_2 x_3 \ldots x_n}{(x_2 + x_3) \ldots (x_n + x_{n+1}) (x_{n+1} + x_{n+2})}.
\]
Using the arithmetic mean and geometric mean inequality we reformulate Shapiro’s inequality in terms of given data as
\[
\sum_{k=1}^{n} F(k) \geq n \left\{ \frac{x_1 x_2 x_3 \ldots x_n}{(x_2 + x_3) \ldots (x_n + x_{n+1})(x_{n+1} + x_{n+2})} \right\}^{1/n}, \tag{4}
\]
where \(x_{n+1} = x_1\) and \(x_{n+2} = x_2\). Equality occurs if all \(x_k\)'s are equal. So we formally prove the following theorem.

Theorem 2.1. Let \(x_k > 0\) and \(x_{n+k} = x_k\) be for all \(k \in \mathbb{N}\). Then
\[
\sum_{k=1}^{n} F(k) \geq n \left\{ \frac{x_1 x_2 x_3 \ldots x_n}{(x_2 + x_3) \ldots (x_n + x_{n+1})(x_{n+1} + x_{n+2})} \right\}^{1/n}, \tag{5}
\]
equality occurs if all \(x_k\)'s are equal.

The following result is immediately follows from the above theorem.

Corollary 2.2. \(\prod_{k=1}^{n} F(k) \leq \frac{1}{2^n}\).

Proof. Applying \((x_k + x_{k+1}) \geq 2 \sqrt{x_k x_{k+1}}\) \((k = 1, 2, \ldots, n)\) to the denominator of (4), one obtains
\[
(x_2 + x_3) \ldots (x_n + x_{n+1})(x_{n+1} + x_{n+2}) \geq 2^n x_1 x_2 x_3 \ldots x_n - 1 x_{n+1} x_{n+2}.
\]
Therefore, \(\prod_{k=1}^{n} F(k) \leq \frac{1}{2^n}\). \(\square\)

We will consider \(x_k > 0\) in the following lemmas where \(k = 1, 2, \ldots, n\).

Lemma 2.3. \(E(x)\) is a homogeneous function of degree 0.

Proof. Proof is trivial. \(\square\)

Lemma 2.4. \(E(x)\) satisfies differential equation \(\sum_{k=1}^{n} x_k E_{x_k}(x) = 0\)

Proof. It is clear that \(E(x)\) possess continuous partial derivatives.
\[
\sum_{k=1}^{n} x_k E_{x_k}(x) = 0
\]
follows immediately from Lemma 2.3. \(\square\)

For these type properties of \(E(x)\) see [11, 14, 27].

Lemma 2.5. Let \((x_k + x_{k+1}) \leq 2 \max\{x_k, x_{k+1}\}\), \(x_{n+1} = x_1\) and \(x_{n+2} = x_2\) be where \(k = 1, 2, \ldots, n\). Then
\[
\prod_{k=1}^{n} F(k) \geq \frac{1}{2^n}.
\]
Proof. If \(\max\{x_k, x_{k+1}\} = x_k \) or \(x_{k+1} \) then
\[
\prod_{k=1}^{n}(x_k + x_{k+1}) \leq 2^n x_1 x_2 x_3 \ldots x_{n-1} x_n.
\]
Thus, \(\prod_{k=1}^{n} F(k) \geq \frac{1}{2^n} \).
\(\square\)

Theorem 2.6. If Lemma 2.5 holds then one obtains Shapiro’s inequality
\[
\sum_{k=1}^{n} F(k) \geq \frac{n}{2}.
\]

Proof. Using (4), proof follows immediately from Lemma 2.5. \(\square\)

3 Examples: Some new Shapiro type inequalities

We want to look at the following interesting identity [for proof, see [28, p.25]].
\[
\prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right) = \frac{n}{2^{n-1}} \quad (n = 2, 3, \ldots).
\]

Example 3.1. Set
\[
F(k) = \sin\left(\frac{k\pi}{n}\right) \quad \text{where} \quad k = 1, 2, \ldots, n - 1.
\]

Then using the above identity together with (4) one gets
\[
\sum_{k=1}^{n-1} F(k) \geq (n - 1)\left(\prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right)\right)^{\frac{1}{n-1}} = (n - 1)\left(\frac{n}{2^{n-1}}\right)^{\frac{1}{n-1}} \geq \frac{n - 1}{2},
\]
since \(1 \leq n^{1/(n-1)} \leq 2 \) as \(n \) varies from 2 to \(\infty \).

Example 3.2. Set
\[
F(k) = \sin\left(\frac{k\pi}{n}\right) \quad \text{where} \quad k = 1, 2, \ldots, n - 1 \quad \text{and} \quad x_n = 1.
\]

Then using the above identity together with (4) one gets
\[
\sum_{k=1}^{n} F(k) \geq n\left(\prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right)x_n\right)^{\frac{1}{n}} = n\left(\frac{n}{2^{n-1}}\right)^{\frac{1}{n}} = n\left(\frac{2n}{2^n}\right)^{\frac{1}{n}} \geq \frac{n}{2},
\]
since \(1 \leq (2n)^{1/n} \leq 2 \) as \(n \) varies from 2 to \(\infty \).
References

[4] L. J. Mordell, *On the inequality* \(\sum_{r=1}^{n} \frac{x_r}{x_{r+1} + x_{r+2}} \geq \frac{n}{2}\) *and some others*, Abh. Math. Sem. Univ. Hamburg 22(1958), pp. 229-240.

[5] L. J. Mordell, *Note on the inequality* \(\sum_{r=1}^{n} \frac{x_r}{x_{r+1} + x_{r+2}} \geq \frac{n}{2}\), J. London Math. Soc. 37(1962), pp. 176-178.

Received: April, 2012