A (Very) Simple Proof that $H^1(G, V) = (0)$

for a Compact, or Connected Semi-Simple Group

Ioannis Farmakis

Brooklyn College
The City University of New York (CUNY)
2900 Bedford Ave., Brooklyn, NY 11210, USA
IFarmakis@brooklyn.cuny.edu

Abstract

In this note we give a (very) simple proof of the known fact that the first cohomology group with coefficients in a finite dimensional real vector space V of a compact, or of a connected semi-simple group G must vanish.

Mathematics Subject Classification: 22C05, 22D12, 22E41, 22E46, 57T10

Keywords: Continuous group cohomology and its vanishing, continuous representation, affine action, fixed point, 1-cochain, 1-coboundary, compact group, semi-simple group

1 Introduction.

Here we prove that $H^1(G, V) = (0)$ for any compact, or connected semi-simple group G with coefficients in a finite dimensional vector space V. The compact case is very well known, see for example Moskowitz, [7] pg. 334, and actually it is proved that for a compact group all the higher order cohomology groups vanish, even when V is a Banach space (see [4], Theorem 6.0.3). Things are quite different when G is a non compact connected semi-simple Lie group.
Here there only seem to be proofs of the following two results:

Let G be a real, connected, semi-simple Lie group acting continuously on a Banach space V.

1. If none of the simple components is locally isomorphic to $SO_o(n, 1)$ or $SU(n, 1)$, then $H^1(G, V) = (0)$. (Erven-Kazdan [3] Chapter V).

2. If G is simply connected, then $H^1(G, V) = (0)$ (S. Komy [5]).

For a counter example in the case of $SO_o(n, 1)$ (which works equally well for $SU(n, 1)$) see [4] pg. 118, or the original proof in [2].

For the reader convenience we recall the definition of the first cohomology group $H^1(G, V)$.

Let G be a locally compact, second countable group and ρ be a continuous representation of G on a real finite dimensional vector space V. We will use without distinction the notations $\rho(g)(v)$, or $g.v$ ($g \in G$ and $v \in V$). Then, the first cohomology group $H^1(G, V)$ is defined as follows:

Definition 1. $H^1(G, V)$ is defined to be the quotient group Z^1/B^1, where Z^1 is the space of the crossed homomorphisms (or 1-cocycles)

$$\varphi : G \rightarrow V : \varphi(gh) = \varphi(g) + g\varphi(h),$$

and B^1 consists of those φ (or 1-coboundaries) of the form $\varphi(g) = g.v_0 - v_0$, for some v_0 in V and all g in G.

Based in a geometric observation of Milnor ([6]), we shall give a very simple proof that $H^1(G, V) = (0)$ ($V = \mathbb{R}^n$) dealing with the compact and semi-simple cases simultaneously.

2 Main Theorem.

In fact, we have the following unifying result:

Theorem 1. Let G be a group all of whose finite dimensional real representations are completely reducible. Then for every finite dimensional representation of G on V, $H^1(G, V) = (0)$.
In particular,

Corollary 1. If G contains a connected semi-simple subgroup H with G/H either compact or of finite volume, then all finite dimensional real representations ρ are completely reducible. (Of course if G is compact, or connected semi-simple this is so. Hence, in all these cases $H^1(G,V) = (0)$).

Proof. Since H is connected semi-simple any continuous representation is completely reducible by H. Weyl’s theorem (see e.g. [1] p. 175). Moreover, as is proved in Moskowitz [8] (Theorem 1, or Corollary 2 respectively), since G/H is either compact, or of finite volume, ρ must be completely reducible. \square

To prove Theorem 1 we need the following:

Definition 2. By an invertible affine transformation of a vector space $V = \mathbb{R}^n$ we mean a map $V \rightarrow V$ given by $x \mapsto Ax + b$, where $x, b \in V$, $A \in GL(V)$.

The next lemma is a slight modification of a result of Milnor (see [6] pg. 183).

Lemma 1. If ρ is completely reducible continuous representation of G by affine transformations of V, then ρ admits a fixed point.

Proof. Identify the space V with the hyperplane $\mathbb{R}^n \times \{1\}$ in \mathbb{R}^{n+1}. Now, any representation of G by affine transformations of $V \times \{1\}$ extends uniquely to a linear representation of G on \mathbb{R}^{n+1}. Indeed the map $x \mapsto Ax + b$, $x \in V$ extends to the map

$$
\begin{pmatrix}
 x \\
 1
\end{pmatrix} \mapsto \begin{pmatrix} A & b \\
 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\
 1
\end{pmatrix} = \begin{pmatrix} Ax + b \\
 1 \end{pmatrix}
$$

which is linear. Since the linear subspace $\mathbb{R}^n \times \{1\}$ is invariant, by hypothesis, there exists a complementary G-invariant subspace W. Then, the intersection

$$W \cap (\mathbb{R}^n \times \{1\})$$

is a fixed point which is not the point (0) since (0) is not in this hyperplane. \square

Turning to the proof of our theorem,
Proof. Let \(\rho : G \longrightarrow GL(V) \) be a continuous linear representation of \(G \) and \(\varphi \) be a 1-cocycle. Define the affine map,

\[
\rho \varphi : G \longrightarrow \text{Aff}(V) := G \ltimes GL(V),
\]

given by

\[
\rho \varphi (g) : V \longrightarrow V \quad \text{such that} \quad \rho \varphi (g)(v) := \rho (g)(v) + \varphi (g).
\]

From the cocycle identity this map is a homomorphism. But by the Lemma 1, the affine map \(\rho \varphi \) has a fixed point. That is, there is a \(v_0 \) in \(V \) with \(\rho \varphi (g)(v_0) = v_0 \), for each \(g \in G \). Then \(\rho (g)(v_0) + \varphi (g) = v_0 \) so that \(\varphi \) is a 1-coboundary and \(H^1(G, V) = (0) \).

Brooklyn College, CUNY

References

A (very) simple proof that $H^1(G,V) = (0)$

Received: April, 2012