Remarks on E-Order-Preserving Transformation Semigroups

C. Namnak and E. Laysirikul

Department of Mathematics, Faculty of Science
Naresuan University, Phitsanulok 65000, Thailand
echaiwatn@nu.ac.th, ekachai_nu@hotmail.com

Abstract

Let $T(X)$ be the full transformation semigroup on a set X. For a partially ordered set X, let E be an arbitrary equivalence relation on X. We consider a subsemigroup of $T(X)$ defined by

$$T_{EO}(X) = \{ \alpha \in T(X) : \forall x, y \in X, (x, y) \in E, x \leq y \Rightarrow (x\alpha, y\alpha) \in E, x\alpha \leq y\alpha \}$$

and call it the E-order-preserving transformation semigroup on X. The purpose of this paper is to investigate relationships between $T_{EO}(X)$ and some subsemigroups of $T(X)$.

Mathematics Subject Classification: 20M20

Keywords: equivalence relation, partially ordered set, transformation semigroup

1 Introduction

Let $T(X)$ denote the semigroup of transformations from a set X into itself under composition of mappings. We call $T(X)$ the full transformation semigroup on X. Its subsemigroups of $T(X)$ have been widely investigated. For examples, Pei [1] has introduced a family of subsemigroups of $T(X)$ defined by

$$T_E(X) = \{ \alpha \in T(X) : \forall x, y \in X, (x, y) \in E \Rightarrow (x\alpha, y\alpha) \in E \}$$

where E is an arbitrary equivalence relation on X. When (X, \leq) is a partially ordered set, Saitô et al. [2] have considered a family of subsemigroups of $T(X)$ as follows:

$$T_\sigma(X) = \{ \alpha \in T(X) : \forall x, y \in X, x \leq y \Rightarrow x\alpha \leq y\alpha \}.$$
In this paper the set X under consideration is a partially ordered set with E an arbitrary equivalence relation on X. We define a family of subsemigroups of $T(X)$ as follows:

$$T_{EO}(X) = \{ \alpha \in T(X) : \forall x, y \in X, (x, y) \in E, x \leq y \Rightarrow (x\alpha, y\alpha) \in E, x\alpha \leq y\alpha \}. $$

Then $T_E(X) \cap T_O(X) \subseteq T_{EO}(X)$.

In this paper, we consider relationships between $T_{EO}(X)$, $T_E(X)$ and $T_O(X)$.

Following the usual terminology for a partially ordered set X, let us say that $a, b \in X$ are comparable if either $a \leq b$ or $b \leq a$, and incomparable if neither of these holds.

A family $\pi = \{ A_i : i \in I \}$ of nonempty subsets of X is said to form a partition of X if $\bigcup \pi = X$ and for all $i, j \in I$, either $A_i = A_j$ or $A_i \cap A_j = \emptyset$.

2 Main Results

In this section, we investigate the condition under which subsemigroups of $T(X)$ are related.

Proposition 2.1. Let X be a partially ordered set and E an arbitrary equivalence relation on X. Then $T_{EO}(X) = T_O(X)$ if and only if $\bigcup K \subseteq E$ where $K = \{ C \times C : C \text{ is a subchain of } X \}$.

Proof. Suppose that there exists $(a, b) \in \bigcup K$ such that $(a, b) \notin E$. Then $a \in A$ and $b \in B$ for some $A, B \in X/E$. Since $(a, b) \in \bigcup K$, $a, b \in C$ for some subchain C of X. Define $\alpha \in T(X)$ by

$$ x\alpha = \begin{cases} a & \text{if } x \in B; \\ b & \text{otherwise.} \end{cases} $$

Let $x, y \in X$ be such that $x \leq y$ and $(x, y) \in E$. By definition of α, we deduce that

$$(x\alpha, y\alpha) = \begin{cases} (a, a) \in E & \text{if } x, y \in B; \\ (b, b) \in E & \text{otherwise.} \end{cases} $$

It follows that $\alpha \in T_{EO}(X)$. Since a and b are comparable, we may assume that $a < b$. Then we have $a\alpha = b \not\leq a = b\alpha$. Hence $\alpha \notin T_O(X)$.

Conversely, assume that $\bigcup K \subseteq E$ where $K = \{ C \times C : C \text{ is a subchain of } X \}$. To show that $T_{EO}(X) = T_O(X)$, let $\alpha \in T_{EO}(X)$ and $a, b \in X$ with $a \leq b$.

Thus $a, b \in C$ for some subchain C of X. By assumption, we have $(a, b) \in E$. Since $\alpha \in T_{EO}(X)$, $aa \leq ba$. Hence $\alpha \in T_O(X)$. Next, let $\alpha \in T_O(X)$ and $x, y \in X$ with $(x, y) \in E$ and $x \leq y$. Since $\alpha \in T_O(X)$, $x\alpha \leq y\alpha$ which implies that $(x\alpha, y\alpha) \in C$ for some subchain C of X. It follows by assumption that $(x\alpha, y\alpha) \in E$. Hence $\alpha \in T_{EO}(X)$. □
Proposition 2.2. Let X be a partially ordered set and E an arbitrary equivalence relation on X. Then $T_{EO}(X) = T(X)$ if and only if for every two distinct a, b in X, $(a, b) \in E$ implies that a and b are incomparable.

Proof. Suppose that there exist distinct elements a, b in X such that $(a, b) \in E$ and a and b are comparable. We may assume that $a < b$. Define $\beta \in T(X)$ by

$$x\beta = \begin{cases} a & \text{if } x = b; \\ b & \text{otherwise.} \end{cases}$$

By definition of β, we then have $a\beta = b \not\leq a = b\beta$. This means that $\beta \notin T_{EO}(X)$.

Conversely, assume that for every two distinct a, b in X, $(a, b) \in E$ implies that a and b are incomparable. Let $\alpha \in T(X)$ and $x, y \in X$ with $(x, y) \in E$ and $x \leq y$. We deduce that $x = y$ which implies that $(x\alpha, y\alpha) \in E$ and $x\alpha \leq y\alpha$. Therefore $\alpha \in T_{EO}(X)$. \hfill \qed

Corollary 2.3. Let X be a partially ordered set and E an arbitrary equivalence relation on X.

(1) If $E = X \times X$, then $T_{EO}(X) = T_O(X)$ and $T_E(X) = T(X)$.

(2) If $E = I_X$, then $T_E(X) = T_{EO}(X) = T(X)$.

Theorem 2.4. Let X be a partially ordered set and E an arbitrary equivalence relation on X. If $T_{EO}(X) \subseteq T_E(X)$, then

(1) $E = X \times X$ or

(2) for each $A \in X/E$ and arbitrary partition $\{P, Q\}$ of A, there exist $x \in P, y \in Q$ such that x and y are comparable.

Proof. Suppose that $E \neq X \times X$ and (2) is not true. Then there exists $A \in X/E$ and a partition $\{P, Q\}$ of A such that a and b are incomparable for all $a \in P, b \in Q$. Since $E \neq X \times X$, choose $B \in X/E$ such that $B \neq A$ and fix $b \in B$. Define $\alpha : X \to X$ by

$$x\alpha = \begin{cases} b & \text{if } x \in P; \\ x & \text{otherwise.} \end{cases}$$

To show that $\alpha \in T_{EO}(X)$, let $x, y \in X$ be such that $(x, y) \in E$ and $x \leq y$. Hence $x, y \in D$ for some $D \in X/E$.

Case 1. $D \neq A$. Then $x, y \notin P$. By definition of α, $x\alpha = x$ and $y\alpha = y$. Hence $(x\alpha, y\alpha) \in E$ and $x\alpha \leq y\alpha$.

Case 2. $D = A$. Since $x \leq y$ and $\{P, Q\}$ is a partition of A, either $x, y \in P$ or $x, y \in Q$. This implies that $(x\alpha, y\alpha) \in E$ and $x\alpha \leq y\alpha$.

It follows by two cases that $\alpha \in T_{EO}(X)$. Notice that for any $x \in P$ and $y \in Q$, $(x, y) \in E$ but $(x\alpha, y\alpha) = (b, y) \not\in E$. Therefore $\alpha \notin T_E(X)$. \hfill \qed
Theorem 2.5. Let \(X \) be a partially ordered set and \(E \) an arbitrary equivalence relation on \(X \). Suppose that for every \(A \in X/E \) and \(x, y \in A \), there exist subchains \(C_1, C_2, C_3, \ldots, C_n \) of \(A \) for some positive integer \(n \) such that \(x \in C_1 \), \(y \in C_n \) and \(C_i \cap C_{i+1} \neq \emptyset \) for all \(i = 1, 2, \ldots, n-1 \). Then \(T_{EO}(X) \subseteq T_E(X) \).

Proof. Suppose that for every \(A \in X/E \) and \(x, y \in A \), there exist subchains \(C_1, C_2, C_3, \ldots, C_n \) of \(A \) for some positive integer \(n \) such that \(x \in C_1 \), \(y \in C_n \) and \(C_i \cap C_{i+1} \neq \emptyset \) for all \(i = 1, 2, \ldots, n-1 \). Let \(\alpha \in T_{EO}(X) \) and \((x, y) \in E \). Hence \(x, y \in A \) for some \(A \in X/E \). It follows by assumption that there exist subchains \(C_1, C_2, C_3, \ldots, C_n \) of \(A \) for some positive integer \(n \) such that \(x \in C_1 \), \(y \in C_n \) and \(C_i \cap C_{i+1} \neq \emptyset \) for all \(i = 1, 2, \ldots, n-1 \). Choose \(c_i \in C_i \cap C_{i+1} \) for all \(i = 1, 2, \ldots, n-1 \). Since \(x, c_1 \in C_1 \), \(x \) and \(c_1 \) are comparable. Assume that \(x \leq c_1 \). By \(\alpha \in T_{EO}(X) \), we deduce that \((x\alpha, c_1\alpha) \in E \). For each \(i = 1, 2, \ldots, n-1 \), we have \(c_i, c_{i+1} \in C_{i+1} \). We may assume that \(c_i \leq c_{i+1} \). Since \((c_i, c_{i+1}) \in E \) and \(\alpha \in T_{EO}(X) \), \((c_i\alpha, c_{i+1}\alpha) \in E \). Similarly, we have that \((c_n\alpha, y\alpha) \in E \). It follows by transitive of \(E \) that \((x\alpha, y\alpha) \in E \). This proves that \(\alpha \in T_E(X) \). \(\square \)

Example 1. Let \(X = \{a_1, a_2, a_3, b\} \) and \(E = \{a_1, a_2\} \times \{a_1, a_2\} \cup \{a_3, b\} \times \{a_3, b\} \). We define \(\leq \ = \{(a_1, a_1), (a_2, a_2), (a_3, a_3), (a_1, a_2), (a_1, a_3), (a_2, a_3), (b, b)\} \). Then \(X \) is a partially ordered set and \(E \) is an equivalence relation on \(X \). Define \(\alpha, \beta, \delta \in T(X) \) by

\[
x\alpha = \begin{cases}
a_3 & \text{if } x = a_1;
b & \text{if } x = a_2;
x & \text{otherwise,}
\end{cases}
\]

\[
x\beta = \begin{cases}
a_2 & \text{if } x = a_1;
a_3 & \text{if } x = a_2;
x & \text{otherwise}
\end{cases}
\]

and

\[
x\delta = \begin{cases}
a_1 & \text{if } x = a_3;
x & \text{otherwise.}
\end{cases}
\]

It is easy to verify that \(\alpha \in T_E(X) \setminus (T_O(X) \cup T_{EO}(X)) \), \(\beta \in T_O(X) \setminus (T_E(X) \cup T_{EO}(X)) \) and \(\delta \in T_{EO}(X) \setminus (T_O(X) \cup T_E(X)) \).

References

Received: May, 2012