A Note on the Density of Certain Sets of Positive Integers

Rafael Jakimczuk

División Matemática, Universidad Nacional de Luján
Buenos Aires, Argentina
jakimczu@mail.unlu.edu.ar

In memory of my sister Fedra Marina Jakimczuk (1970-2010)

Abstract

In former articles we have obtained a set \(A \) of positive integers with positive density \(\sigma \) and a partition of \(A \) in infinite sets \(A_i \) \((i = 1, 2, \ldots)\) with positive density \(\sigma_i \) such that the following equation holds \(\sum_{i=1}^{\infty} \sigma_i = \sigma \). Consequently the sum of the densities of the infinite sets \(A_i \) equals the density of the union \(A \) of these infinite sets. In this note we give examples where the following inequality holds \(\sum_{i=1}^{\infty} \sigma_i < \sigma \). That is, the sum of the densities of the infinite sets \(A_i \) is less than the density of the union \(A \) of these infinite sets.

Mathematics Subject Classification: 11A99, 11B99

Keywords: Sets of positive integers, density

1 Introduction

In this section \(p_n \) denotes the \(n \)-th prime number. Then \(p_1 = 2, p_2 = 3, p_3 = 5, p_4 = 7, p_5 = 11, \ldots \).

If \(A \) is a set of infinite positive integers and \(A(x) \) is the number of positive integers in \(A \) that do not exceed \(x \) the density of the set \(A \) is

\[
\lim_{x \to \infty} \frac{A(x)}{x},
\]

when this limit exists. Clearly the density is a nonnegative real number less than or equal to 1.

Consider the following two examples.
Example 1.1 Let β_{ph} be the set of all positive integers whose prime factorization is of the form $p_h^{s_1} p_{h+1}^{s_2} \ldots$ where $s_i \geq 0$ ($i = h + 1, h + 2, \ldots$) and $s_h \geq 1$. That is, the set β_{ph} of all positive integers such that the minimum prime factor in their prime factorization is p_h. Note that if $i \neq j$ then the sets β_{pi} and β_{pj} are disjoint. On the other hand $\bigcup_{h=1}^{\infty} \beta_{ph} = N - \{1\}$, where N is the set of all positive integers. That is, the sets β_{ph} ($h = 1, 2, \ldots$) are a partition of $N - \{1\}$. The density of $N - \{1\}$ is 1. In [2] is proved that the set β_{ph} ($h = 1, 2, \ldots$) has positive density

$$D_{ph} = \left(\prod_{i=1}^{h-1} \left(1 - \frac{1}{p_i} \right) \right) \frac{1}{p_h},$$

and that the sum of the infinite positive densities is 1. That is,

$$\sum_{h=1}^{\infty} D_{ph} = 1.$$

Consequently the sum of the densities of the infinite sets β_{ph} equals the density of the union of these infinite sets.

Example 1.2 A positive integer n is quadratfrei if it is either a product of different primes or 1. For example, $n = 2$ and $n = 5.7.23$ are quadratfrei. Let Q_1 be the set of quadratfrei numbers, it is well-known [1, Chapter XVIII, Theorem 333] that this set has positive density $\frac{6}{\pi^2}$. That is, if $Q_1(x)$ is the number of quadratfrei numbers not exceeding x we have

$$\lim_{x \to \infty} \frac{Q_1(x)}{x} = \frac{6}{\pi^2}.$$

Let Q_2 be the set of not quadratfrei numbers. That is, the set of numbers such that in their prime factorization there exists a prime with exponent greater than 1. The density of this set will be $1 - \frac{6}{\pi^2}$. That is, if $Q_2(x)$ is the number of not quadratfrei numbers not exceeding x we have

$$\lim_{x \to \infty} \frac{Q_2(x)}{x} = 1 - \frac{6}{\pi^2}.$$

Let us consider the set β_{ph} of all positive integers such that in their prime factorization p_h is the minimum prime with exponent greater than 1. Note that if $i \neq j$ then the sets β_{pi} and β_{pj} are disjoint. On the other hand $\bigcup_{h=1}^{\infty} \beta_{ph} = Q_2$. That is, the sets β_{ph} ($h = 1, 2, \ldots$) are a partition of Q_2. The density of Q_2 is (see above)$1 - \frac{6}{\pi^2}$. In [3] is proved that the set β_{ph} ($h = 1, 2, \ldots$) has positive density

$$D_{ph} = \left(\prod_{i=1}^{h-1} \left(1 - \frac{1}{p_i} \right) \right) \frac{1}{p_h^2}.$$
and that the sum of the infinite positive densities is $1 - \frac{6}{\pi^2}$. That is,

$$\sum_{h=1}^{\infty} D_{ph} = 1 - \frac{6}{\pi^2}.$$

Consequently the sum of the densities of the infinite sets β_{ph} equals the density of the union of these infinite sets.

In these two examples we have a set A of positive integers with positive density σ and a partition of A in infinite sets A_i ($i = 1, 2, \ldots$) with positive density σ_i such that the following equation holds

$$\sum_{i=1}^{\infty} \sigma_i = \sigma.$$ \hspace{1cm} (1)

Consequently the sum of the densities of the infinite sets A_i equals the density of the union A of these infinite sets.

2 Main Results

We have the following theorem.

Theorem 2.1 Let A be a set of positive integers with density σ and consider a partition of A in infinite sets A_i ($i = 1, 2, \ldots$) with density σ_i. The following inequality holds

$$\sum_{i=1}^{\infty} \sigma_i \leq \sigma.$$ \hspace{1cm} (2)

Proof. We have for all $k \geq 1$ the inequality

$$A_1(x) + A_2(x) + \cdots + A_k(x) \leq A(x) \quad (x \geq 1),$$

where $A_i(x)$ is the number of numbers in the set A_i that do not exceed x and $A(x)$ is the number of numbers in the set A that do not exceed x.

Consequently

$$\lim_{x \to \infty} \left(\frac{A_1(x) + A_2(x) + \cdots + A_k(x)}{x} \right) = \sigma_1 + \sigma_2 + \cdots + \sigma_k \leq \lim_{x \to \infty} \frac{A(x)}{x} = \sigma$$

Therefore since the $\sigma_i \geq 0$ the series $\sum_{i=1}^{\infty} \sigma_i$ is convergent and $\sum_{i=1}^{\infty} \sigma_i \leq \sigma$. The theorem is proved.

In Examples 1.1 and 1.2 equation (2) becomes the equality

$$\sum_{i=1}^{\infty} \sigma_i = \sigma.$$
However there exist examples where
\[\sum_{i=1}^{\infty} \sigma_i < \sigma. \] (3)

We now give two examples where (3) is fulfilled.

Example 2.2 Let \(\pi_i \) be the set of quadratfrei with \(i \) prime factors \((i \geq 1) \) and let \(\pi_i(x) \) be the number of quadratfrei with \(i \) prime factors that do not exceed \(x \). We have [1, Chapter XXII, Theorem 437]

\[\pi_i(x) \sim \frac{x (\log \log x)^{i-1}}{(i-1)! \log x} \quad (i \geq 1). \]

Consequently
\[\sigma_i = \lim_{x \to \infty} \frac{\pi_i(x)}{x} = 0. \]

That is, the set \(\pi_i \ (i \geq 1) \) has density \(\sigma_i = 0 \). On the other hand the union of the sets \(\pi_i \ (i \geq 1) \) is the set \(Q_1 \) of quadratfrei numbers whose density is (see Example 1.2) \(\sigma = \frac{6}{\pi^2} \). Consequently in this example we have
\[\sum_{i=1}^{\infty} \sigma_i = 0 < \sigma = \frac{6}{\pi^2}. \]

Example 2.3 Let us consider the set (see Example 1.2 and Example 2.2) \(A_i = \pi_i \cup \beta_{p_i} \ (i \geq 1) \). This set has positive density \(\sigma_i = 0 + D_{p_i} = D_{p_i} \). On the other hand, the union of the sets \(A_i \ (i \geq 1) \) is the set of all positive integers whose density is \(\sigma = 1 \). Consequently in this example we have
\[\sum_{i=1}^{\infty} \sigma_i = \sum_{i=1}^{\infty} D_{p_i} = 1 - \frac{6}{\pi^2} < \sigma = 1. \]

ACKNOWLEDGEMENTS. The author is very grateful to Universidad Nacional de Luján.

References

Received: June, 2012