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Abstract

In this article we obtain some results on the sequence c¢(n), where
¢(n) is the sum of the prime factors in the prime factorization of n.
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1 Introduction

In this note we obtain some results on the sequence c(n), where c¢(n) is the
sum of the prime factors in the prime factorization of n > 2. For example if
n = 12 then ¢(n) = ¢(12) = ¢(2.2.3) =2+ 2+ 3 = 7 and if n is prime then
c(n) =n.

The first few terms of the integer sequence c¢(n) are

2,3,4,5,5,7,6,6,7,11,7,13,9,8,8,17,8,19,9, 10, 13, 23,9, 10, 15,9, 11, 29,

10,31, 10, 14,19, 12,10, 37 . ..

Therefore ¢(2) = 2, ¢(3) =3, ¢(4) =4, ¢(5) =5, ¢(6) =5, ...
We see that the sequence c¢(n) is very irregular. On the other hand, we see
that there are numbers repeated.
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2 Main Results

First, we establish two general lemmas.

Lemma 2.1 If a; (i = 1,...,n) are positive integers such that a; > 2
(t=1,...,n) then we have the following inequality
ay+as+---+a, <aay---ay, (n>1). (1)

Proof. We apply mathematical induction. If n = 1 we obtain a; < a;. Con-
sequently the lemma is true for n = 1. If n = 2 we can suppose that a; > as.
Therefore

ai.as > a1.2 =a; +a; > a; + as.

That is
ay1.a9 > a) + ao. (2)

Consequently the lemma is true for n = 2.
Suppose that the lemma is true for n > 2, that is (inductive hypothesis)

ay+ag + -+ ap < arag - ay. (3)

We shall prove that the lemma is also true for n + 1.
Equation (2) and equation (3) give

ay - Anlnyr = (@ ap) Gper > (a1 @) + Apyr > a1+ + @y + Ay
The lemma is proved.

Lemma 2.2 If a; (i = 1,...,n) are positive integers such that a; > 2
(t=1,...,n) then we have the following inequality

3
a1+a2+-~-—|—an2@log(a1a2-~-an). (4)

Proof. If we study the function f(z) = 10290 then we obtain the following
inequality

k 3
> PR
logk — log3
where k is a positive integer such that k£ > 2. Consequently we have (n > 1)
i 3
%> i=1,...,n)
loga; — log3
That is
a; > log a; (t=1,...,n).

log 3
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Therefore

3 3
a+ag+---+a, > —— (loga; +logas + ---+loga,) = log (a1as - - - ay)

log 3 log 3
The lemma is proved.
We have the following theorems.
Theorem 2.3 We have the following inequalities
cn)<n  (n>2), (5)
c(n) > 5 logn (n>2). (6)
log 3

Proof. If we consider the prime factorization of n and apply (1) and (4) then
we obtain (5) and (6) respectively. The theorem is proved.

Remark 2.4 Note that in theorem 2.3 n is the least upper bound since if n

is prime then c¢(n) = n. Besides, 1023 logn is the greatest lower bound since if

n = 3% then c¢(3%) = 2= log 3F = 3k.

~ log3

Corollary 2.5 The following limit holds.

lim ¢(n) = oo.

n—oo

Proof. It is an immediate consequence of equation (6).

Let n be a positive integer greater than 1. ©¥(n) denotes the number of
partitions of n into positive prime numbers.

Lemma 2.6 Ifn =234 then 9(n) =1. If n > 5 then ¥(n) > 2.

Proof. If n >6iseven we haven=2+---+2=2+---+24+3+3. If n>9
isodd we have n=2+---+2+3=2+---4+2+3+3+3. If n =5 we have
5=bandb5=2+3. Ifn=Twehave 7T=7,7T=2+5and 7=2+ 2+ 3.
The lemma is proved.

Theorem 2.7 The equation c(i) = n where n > 2 has ¥(n) solutions.
Consequently if n = 2,3,4 then the equation has one solution. On the other
hand if n > 5 the equation has at least two solutions.

Proof. It is an immediate consequence of the definition of ¢(n) and of lemma
2.6. The theorem is proved.
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Theorem 2.8 The sequence c(n) is not decreasing. The sequence c(n) is
not increasing.

Proof. Clearly the sequence ¢(n) is not decreasing (see corollary 2.5). On the
other hand, the sequence ¢(n) is not increasing since if p > 7 is prime we have

p < 2% and clp)=p>c (QPT_I) = p — 1. The theorem is proved.

Theorem 2.9 We have the following asymptotic formula

n 71.2 n?

1=2

Proof. Let Si(n) be the sum of the prime factors in the prime factorization of
n!. In a previous article [1] we prove the asymptotic formula Si(n) ~ 2 _n’
On the other hand, clearly Si(n) = >, ¢(i). The theorem is proved.

12 logn

Theorem 2.10 Let us consider the set {c(2),¢(3),...,c(n)}. Let ng be the
number of numbers in this set such that c(i) > 1og1i*€i where 0 < € < 1 s fized.
We have lim,, ., "¢ = 0.

Proof. Note that there exists a positive integer ¢ > 2 such that the function
f(z) = bg1+€x is strictly increasing on the interval [g, co].

Let us consider the set {c(q),c(q + 1),...,¢(n)}. Let my be the num-
ber of numbers in this set such that c(i) > 1og+€z Suppose that the limit
lim,, o #* = 0 is not fulfilled. Therefore there exists a > 0 such that for
infinite values of n we have ™% > a.

Note that (L'Hospital’s rule)

R
i BTy
2logl ¢z
That is
[ ()%
x
q logl_et N9 10g ¢ 1
where hy(x) — 1.
Therefore we have
n g+mo—1 _
1 q+mo—1 T
ZC(Z) 2 Z C(Z) 2 Z 1—e 2/ 1—e dx
i=q (i) e 24 = log i q log" "z
qg—1+an —1
> / ie dx =hy (¢ — 1+ an) (?76 +an)
q log “x 2log ‘(g — 1+ an)
2 2 2
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where hy(n) — 1 and 0 < C' < &-. That is
n 2

2 i

log® n. 8
logn g (8)
Now, equation (8) and equation (7) are an evident contradiction. Therefore
lim,, o =% = 0 and consequently lim,, .., ¢ = 0. The theorem is proved.

Corollary 2.11 Let us consider the set {c(2),c(3),...,¢c(n)}. Let ny be the
number of numbers in this set such that c(i) < Wi*i where 0 < e < 1 is fized.
We have lim,, o, %t = 1.

Theorem 2.12 There exists ng such that if n > ng we have the following
inequality

1 - n
1 < . 9
8T Zz;c logn )
Proof. Theorem 2.3 gives
| "1 "1
O P ) Y E— 10
iZQi_gc(i)_glogi (10)
Now, we have
n 1
Z / — dx 4+ O(1) = h(n)logn > 3 log n, (11)
1=2 U
where h(n) — 1.
On the other hand, we have
"1 no] n n
— = d o) = <2 12
—logi J2 logx r+0(1) g(n)logn logn’ (12)
where g(n) — 1. Since (L’Hospital rule)
g 1
lim f{zbi = lim 10{;5: =1.
x o0 ]ng €T oo log—Qx

Finally, (10), (11) and (12) give (9). The theorem is proved.
Corollary 2.13 The series Y ;2 Po)
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is divergent and 37 = o(n).

References

[1] R. Jakimczuk, Sums of prime numbers, the zeta function and the 7 num-
ber, International Mathematical Forum, 3 (2008), 1383 - 1386.

Received: June, 2012



