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Abstract

The known 1970 solution to the 10th Hilbert problem says that no
algorithm is possible that would decide whether a given Diophantine
equation has a solution. In set terms, this means that not all Diophan-
tine sets are decidable. In a posting to the Foundations of Mathematica
mailing list, Timothy Y. Chow asked for possible formal justification for
his impression that most Diophantine equations are not decidable. One
such possible justification is presented in this paper.
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1 Formulation of the Problem

Decidability of Diophantine equations: a brief reminder. A Diophan-
tine equation is an equation of the type P (x1, . . . , xn, c1, . . . , cm) = 0, where
P is a polynomial with integer coefficients, x1, . . . , xn are natural-valued un-
knowns, and c1, . . . , cm are natural-valued parameters.

For many equations:

• for some values of the parameters c = (c1, . . . , cm), there is a solution,
while
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• for other values c = (c1, . . . , cm), the equation has no solution.

For some Diophantine equations, an algorithm is known that, given the
tuples of parameters c = (c1, . . . , cm), tell us whether the corresponding equa-
tion has a solution. One of the problems that David Hilbert formulated in
1900 – as challenges for the 20 century mathematicians – was to find a general
algorithm for telling whether a given instance of a Diophantine equation has
a solution; this was Problem No. 10; see, e.g., [1, 2].

The answer to this problem turned out to be negative: in 1970, Yuri Matiya-
sevich proved that no such general algorithm is possible; see, e.g., [3]. More-
over, he proved the following stronger result.

Namely, one can easily check that for each Diophantine equation, the cor-
responding Diophantine set DP – i.e., the set

DP
def
= {(c1, . . . , cm) : ∃x1 . . . ∃xn (P (x1, . . . , xn, c1, . . . , cm) = 0)}

of all the tuples c = (c1, . . . , cm) for which there the corresponding instance
of the equation has a solution is computationally enumerable in the sense that
there exists an algorithm that eventually enumerates all the elements of this
set.

Indeed, we can order all possible tuples (x1, . . . , xn, c1, . . . , cm) into a single
sequence and for each of these tuples, check whether P (x1, . . . , xn, c1, . . . , cm) =
0. If this equality is satisfied, we produce the tuple (c1, . . . , cm).

One can easily check that this procedure will produce all the tuples from
the Diophantine set DP – and only these tuples.

What Matiyasevich proved is that, vice versa, every computationally enu-
merable set is Diophantine, i.e., for every computationally enumerable set S,
there exists a polynomial P for which S = DP .

Question. In a 2017 posting to the Foundations of Mathematics mailing list,
Timothy Y. Chow asked the following question: The impression I’ve gotten—
although I don’t think I’ve seen it explicitly asserted anywhere—is that in some
sense “most” Diophantine sets are not computable. Are there any results, or
even heuristic arguments, in this direction?

Why this equation is difficult. This question would have been more precise
– and potentially having a direct answer – if there was a natural probability
measure on the set of all Diophantine equations. If such a measure existed,
we would check what is the probability of the set of all decidable Diophantine
equations.

However, no such natural measure is known, so we have to come up with
a less direct answer to this question.

What we do in this paper. In this paper, we prove a simple argument
formally justifying this impression.
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2 Towards Our Explanation

The first auxiliary result that we use in our justification. For every

two sets A and B, we can form their disjoint union A t B
def
= ({0} × A) ∪

({1}×B). Let us show that the disjoint union of two Diophantine sets is also
a Diophantine set.

Indeed, let the first Diophantine set is corresponds to the polynomial
P (x, c) and the second one to the polynomial P ′(x, c). Let us that their disjoint
union can be represented by the equation

P ′′ def
= c′′ · (P (x, c))2 + (1− c′′) · (P ′(x, c))2 + (c′′ · (1− c′′))2 = 0,

for some auxiliary natural-valued parameter c′′ (which will be equal to 0 or 1).
Indeed:

• If for some c, the equation P (x, c) = 0 has a solution, then by setting
c′′ = 1 we get a solution to the above equation.

• Similarly, if for some c, the equation P ′(x, c) = 0 has a solution, then
we get a solution to the above equation by setting c′′ = 0 and thus,
1− c′′ = 1.

Vice versa, if the above equation has a solution, then, since the sum of
three non-negative terms forming the polynomial P ′′ is equal to 0, all three
terms must be equal to 0. From the fact that the third term (c′′ · (1− c′′))2 is
equal to 0, we conclude that either c′′ = 1 or c′′ = 0.

• In the first case, we get P (x, c) = 0, hence c ∈ A.

• In the second case, we get P ′(x, c) = 0 and thus, c′ ∈ B.

Thus, indeed, the Diophantine set DP ′′ corresponding to the polynomial P ′′

has the form ({0}×A)∪ ({1}×B), i.e., is the disjoint union of the sets A and
B.

A simple consequence of this auxiliary result. By induction, we can now
easily prove that for every tuples A, . . . , B or Diophantine sets, their disjoint
union A t . . . tB is also a Diophantine set

Preliminary construction. Let us effectively enumerate all Diophantine
sets into a sequence S1, . . . , Sn, . . .

Let us now pick some natural number n, and consider sets S1, . . . , Sn.

Let us apply disjoint union to the preliminary construction. For any
natural number d, if we consider disjoint unions Si1 t . . . t Sid of d sets Sik

(1 ≤ ik ≤ n), then we get nd possible product sets.
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The whole class of Diophantine sets can be obtained if we tend both n and
d to infinity.

The second auxiliary result that we use in our justification. It is easy
to see that the disjoint union A t . . . tB of several sets A, . . . , B is decidable
if and only if all the sets A, . . . , B are decidable.

Explanation. Now, we are ready for the desired explanation.
Let m(n) denote the number of decidable sets among the first n Diophantine

sets S1, . . . , Sn. Then out of nd possible disjoint unions, (m(n))d are decidable,

so the proportion of decidable products is

(
m(n)

n

)d

.

Since some Diophantine sets are undecidable, for large n, we get m(n) < n

and thus,
m(n)

n
< 1. Thus, for all sufficiently large n, when d tends to infinity,

we have

(
m(n)

n

)d

→ 0, i.e., we conclude that the proportion of decidable sets

tends to 0.
This is true for every n, so the limit of this limit when n tends to infinity

is also 0.
In this sense, the proportion of decidable sets is 0, and thus, almost all

Diophantine sets are undecidable.
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