On Natural Lift of a Curve

Evren ERGÜN
Ondokuz Mayıs University, Faculty of Arts and Sciences
Department of Mathematics, Samsun, Turkey
eergun@omu.edu.tr

Mustafa ÇALIŞKAN
Gazi University, Faculty of Sciences
Department of Mathematics, Ankara, Turkey
mustafacaliskan@gazi.edu.tr

Abstract
In this study, the Frenet vector fields $\overline{T}, \overline{N}, \overline{B}$, curvature $\overline{\kappa}$ and torsion $\overline{\tau}$ of the natural lift $\overline{\alpha}$ of a curve α are calculated in terms of those of α in \mathbb{R}^3. The same study has been done in \mathbb{R}^4.

Mathematics Subject Classification: 51B20, 53A15, 53A04

Keywords: Natural Lift, Frenet Frame, Curvature, Torsion

1 Introduction and Preliminary Notes

Let $\alpha : I \rightarrow \mathbb{R}^3$ be a parametrized curve. We denote by $\{T(s), N(s), B(s)\}$ the moving Frenet frame along the curve α, where T, N and B are the tangent, the principal normal and the binormal vector of the curve α, respectively.

Let α be a regular curve in \mathbb{R}^3. Then

$$T = \frac{\alpha'}{\|\alpha'\|}, \quad N = B \times T, \quad B = \frac{\alpha' \times \alpha''}{\|\alpha' \times \alpha''\|}, \quad [6].$$

If α is a unit speed curve, then

$$T = \alpha', \quad N = \frac{\alpha''}{\|\alpha''\|}, \quad B = T \times N, \quad [6].$$
Let α be a unit speed space curve with curvature κ and torsion τ and let Frenet vector fields of α be $\{T, N, B\}$. Then, Frenet formulas are given by

$$T' = \kappa N, \quad N' = -\kappa T + \tau B, \quad B' = -\tau N,$$

where $\kappa = \langle T', N \rangle$ and $\tau = \langle N', B \rangle$.

For any unit speed curve $\alpha : I \rightarrow \mathbb{R}^3$, we call $W(s) = \tau T(s) + \kappa B(s)$ the Darboux vector field of α, [1].

Let M be a hypersurface in \mathbb{R}^3 and let $\alpha : I \rightarrow M$ be a parametrized curve. α is called an integral curve of X if

$$d\frac{ds}{ds}(\alpha(s)) = X(\alpha(s)) \quad \text{(for all } s \in I), [1].$$

where X is a smooth tangent vector field on M. We have $TM = \bigcup_{P \in M} T_PM = \chi(M)$, where T_PM is the tangent space of M at P and $\chi(M)$ is the space of vector fields on M.

For any parametrized curve $\alpha : I \rightarrow M$, $\overline{\alpha} : I \rightarrow TM$ given by

$$\overline{\alpha}(s) = (\alpha(s), \alpha'(s)) = \alpha'(s)|_{\alpha(s)}, [5].$$

is called the natural lift of α on TM. Thus, we can write

$$\frac{d\overline{\alpha}}{ds} = \frac{d}{ds} \left(\alpha'(s)|_{\alpha(s)} \right) = D_{\alpha'(s)}\alpha'(s)$$

where D is the Levi-Civita connection on \mathbb{R}^3.

Let $\alpha : I \rightarrow \mathbb{R}^3$ be a parametrized curve. We denote by $\{T(s), N(s), B(s)\}$ the moving Frenet frame along the curve α, where T, N and B are the tangent, the principal normal and the binormal vector of the curve α, respectively.

Let α be a unit speed timelike space curve with curvature κ and torsion τ. Let Frenet vector fields of α be $\{T, N, B\}$. In this trihedron, T is timelike vector field, N and B are spacelike vector fields. Then, Frenet formulas are given by [4]

$$T' = \kappa N \quad N' = \kappa T + \tau B \quad B' = -\tau N.$$

Let α be a unit speed spacelike space curve with a spacelike binormal. In this trihedron, we assume that T and B are spacelike vector fields and N is a timelike vector field. Then, Frenet formulas are given by [4]

$$T' = \kappa N \quad N' = \kappa T + \tau B \quad B' = \tau N.$$

Let α be a unit speed spacelike space curve with a timelike binormal. In this trihedron, we assume that T and N are spacelike vector fields and B is a timelike vector field. Then, Frenet formulas are given by [4]
\[T' = \kappa N \ N' = -\kappa T + \tau B \ B' = \tau N. \]

Let \(M \) be a hypersurface in \(\mathbb{R}^3 \) and let \(\alpha : I \longrightarrow M \) be a parametrized curve. \(\alpha \) is called an integral curve of \(X \) if
\[
\frac{d}{ds} (\alpha (s)) = X (\alpha (s)) \text{ (for all } s \in I) \]
where \(X \) is a smooth tangent vector field on \(M \). We have
\[
TM = \bigcup_{P \in M} T_P M = \chi (M)
\]
where \(T_P M \) is the tangent space of \(M \) at \(P \) and \(\chi (M) \) is the space of vector fields on \(M \).

For any parametrized curve \(\alpha : I \longrightarrow M \), \(\overline{\alpha} : I \longrightarrow TM \) given by
\[
\overline{\alpha} (s) = \left(\alpha (s), \alpha' (s) \right) = \alpha' (s) |_{\alpha(s)}. \]

is called the natural lift of \(\alpha \) on \(TM \). Thus, we can write
\[
\frac{d}{ds} (\overline{\alpha}) = \frac{d}{ds} (\alpha' |_{\alpha(s)}) = D_{\alpha'(s)} \alpha' (s)
\]
where \(D \) is the Levi-Civita connection on \(\mathbb{R}^3 \).

2 ON NATURAL LIFT OF A CURVE

For any parametrized curve in \(\mathbb{R}^3 \) \(\alpha : I \longrightarrow M \), \(\overline{\alpha} : I \longrightarrow TM \) given by
\[
\overline{\alpha} (s) = \left(\alpha (s), \alpha' (s) \right) = \alpha' (s) |_{\alpha(s)}
\]

is called the natural lift of \(\alpha \) on \(TM \).

We denote by \(\{ \overline{T} (s), \overline{N} (s), \overline{B} (s) \} \) the moving Frenet frame along the curve \(\overline{\alpha} \), where \(\overline{T}, \overline{N} \) and \(\overline{B} \) are the tangent, the principal normal and the binormal vector of the curve \(\overline{\alpha} \), respectively.

Corollary 1 Let \(\overline{\alpha} \) be the natural lift of \(\alpha \) in \(\mathbb{R}^3 \) and be a regular curve. Then
\[
\begin{align*}
\overline{T} (s) &= N (s) \\
\overline{N} (s) &= -\frac{\kappa (s)}{\|W\|} T (s) + \frac{\tau (s)}{\|W\|} B (s) \\
\overline{B} (s) &= \frac{\tau (s)}{\|W\|} T (s) + \frac{\kappa (s)}{\|W\|} B (s).
\end{align*}
\]
Let α be a space curve with curvature κ and torsion τ. Then $\pi = \langle T', N \rangle$ and $\tau = \langle N', B \rangle$.

Corollary 2 Let α be the natural lift of α with curvature κ and torsion τ. Then

$$\kappa(s) = \frac{\kappa^2(s) + \tau^2(s)}{\|W\|}, \quad \tau(s) = \frac{-\kappa'(s) \tau(s) + \kappa(s) \tau'(s)}{\|W\|^2}.$$

For any parametrized curve in \mathbb{R}^3 $\alpha : I \rightarrow M$, $\pi : I \rightarrow TM$ given by $\pi(s) = \left(\alpha(s), \alpha'(s) \right) = \alpha'(s)|_{\alpha(s)}$ is called the natural lift of α on TM.

We denote by $\{T(s), N(s), B(s)\}$ the moving Frenet frame along the curve α, where T, N and B are the tangent, the principal normal and the binormal vector of the curve α, respectively.

Corollary 3 Let α be a unit speed timelike space curve and π be the natural lift of α. Then

$$\begin{align*}
T(s) &= N(s) \\
N(s) &= -\frac{\kappa(s)}{\|W\|} T(s) - \frac{\tau(s)}{\|W\|} B(s) \\
B(s) &= -\frac{\tau(s)}{\|W\|} T(s) - \frac{\kappa(s)}{\|W\|} B(s).
\end{align*}$$

Corollary 4 Let α be a unit speed timelike space curve and the natural lift π of the curve α be a space curve with curvature κ and torsion τ. Then

$$\begin{align*}
\kappa(s) &= \frac{\kappa^2(s) - \tau^2(s)}{\|W\|}, \quad \tau(s) = \frac{-\kappa'(s) \tau(s) + \kappa(s) \tau'(s)}{\|W\|^2}.
\end{align*}$$

Corollary 5 Let α be a unit speed spacelike space curve with a spacelike binormal and π be the natural lift of α. Then

$$\begin{align*}
T(s) &= N(s) \\
N(s) &= \frac{\kappa(s)}{\|W\|} T(s) + \frac{\tau(s)}{\|W\|} B(s) \\
B(s) &= \frac{\tau(s)}{\|W\|} T(s) - \frac{\kappa(s)}{\|W\|} B(s).
\end{align*}$$
Corollary 6 Let \(\alpha \) be a unit speed spacelike space curve with a spacelike binormal and the natural lift \(\overline{\alpha} \) of the curve \(\alpha \) be a space curve with curvature \(\overline{\kappa} \) and torsion \(\overline{\tau} \). Then

\[
\overline{\kappa}(s) = \frac{\kappa^2(s) + \tau^2(s)}{\|W\|}, \quad \overline{\tau}(s) = \frac{\kappa'(s)\tau(s) - \kappa(s)\tau'(s)}{\|W\|^2}.
\]

Corollary 7 Let \(\alpha \) be a unit speed spacelike space curve with a timelike binormal and \(\overline{\alpha} \) be the natural lift of \(\alpha \). Then

\[
\overline{T}(s) = N(s), \\
\overline{N}(s) = -\frac{\kappa(s)}{\|W\|}T(s) - \frac{\tau(s)}{\|W\|}B(s), \\
\overline{B}(s) = \frac{\tau(s)}{\|W\|}T(s) + \frac{\kappa(s)}{\|W\|}B(s).
\]

Corollary 8 Let \(\alpha \) be a unit speed spacelike space curve with a timelike binormal and the natural lift \(\overline{\alpha} \) of the curve \(\alpha \) be a space curve with curvature \(\overline{\kappa} \) and torsion \(\overline{\tau} \). Then

\[
\overline{\kappa}(s) = \frac{\kappa^2(s) + \tau^2(s)}{\|W\|}, \quad \overline{\tau}(s) = \frac{-\kappa'(s)\tau(s) + \kappa(s)\tau'(s)}{\|W\|^2}.
\]

References

Received: November, 2011