A Lower Bound for $\tau(n)$ of Any k-Perfect Numbers

Keneth Adrian P. Dagal

Department of Mathematics
Far Eastern University
Manila, Philippines

Abstract

A natural number n is said to be k-perfect number if $\sigma(n) = k \cdot n$ for some integer $k \geq 2$. In this paper, we will provide a lower bound for $\tau(n)$ of any k-perfect numbers. The lower bound for $\tau(n)$ will help in determining if the number is a possible k-perfect or not. For example, for all n where $\tau(n) < 40,427,833,596$, the number n can never be a k-perfect number with $k \geq 25$.

Mathematics Subject Classification: 10A

Keywords: k-perfect numbers, abundancy index

1 Introduction

The number of divisors of any natural number n, $n = \prod_{i=1}^{m} p_i^{\alpha_i}$, is given by the formula $\tau(n) = \sum_{d|n} 1 = \prod_{i=1}^{m} (\alpha_i + 1)$ and the sum of the divisors of any natural number n is defined as $\sigma(n) = \sum_{d|n} d$ where d is a divisor of n. In studying perfect numbers, the abundancy index, denoted by $I(n)$, is defined as $I(n) = \frac{\sigma(n)}{n}$. And lastly, a natural number n is said to be k-perfect number if $\sigma(n) = k \cdot n$ for some integer $k \geq 2$. If n is k-perfect, then $I(n) = \sum_{d|n} \frac{1}{d} = k$. On the other hand, we know that the nth harmonic number denoted by H_n is defined as $H_n = \sum_{i=1}^{n} \frac{1}{i}$. Clearly, $I(n) \leq H_n$ for all natural numbers n.
2 Preliminary Results

Let us first consider some lemmas.

Lemma 2.1. For \(k \in \mathbb{N} \), the inequality
\[
\left(1 + \frac{1}{k(k+2)}\right)^k \leq 1 + \frac{1}{k+1} \leq \left(1 + \frac{1}{k(k+1)}\right)^k
\]
holds.

Proof 2.2. Consider first the inequality
\[
1 + \frac{1}{k+1} \leq \left(1 + \frac{1}{k(k+1)}\right)^k
\]
By binomial expansion on the RHS of the inequality, we have
\[
\left(1 + \frac{1}{k(k+1)}\right)^k = \sum_{i=0}^{k} \binom{k}{i} 1^{k-i} \left(\frac{1}{k(k+1)}\right)^i = 1 + \frac{1}{k+1} + \sum_{i=2}^{k} \binom{k}{i} 1^{k-i} \left(\frac{1}{k(k+1)}\right)^i.
\]
Clearly,
\[
0 \leq \sum_{i=2}^{k} \binom{k}{i} 1^{k-i} \left(\frac{1}{k(k+1)}\right)^i.
\]
Adding both sides by \(1 + \frac{1}{k+1} \), we arrive on the desired inequality. On the other hand, consider the inequality
\[
\left(1 + \frac{1}{k(k+2)}\right)^k \leq 1 + \frac{1}{k+1}
\]
Raising both sides by \(k+2 \), we get
\[
\left(1 + \frac{1}{k(k+2)}\right)^{k+2} \leq \left(1 + \frac{1}{k+1}\right)^{k+2} \Leftrightarrow \left(1 + \frac{1}{x}\right)^x \leq \left(1 + \frac{1}{y}\right)^{y+1}.
\]
Since the
\[
\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e \quad \text{and} \quad \lim_{y \to +\infty} \left(1 + \frac{1}{y}\right)^{y+1} = e
\]
from below and from above respectively, by using the binomial theorem and the power series expansion of \(e \), then that proves the inequality.

Lemma 2.3. The inequality
\[
\sum_{i=2}^{n} \frac{1}{i} < \int_{1}^{n} \frac{1}{x} \, dx < \sum_{i=1}^{n} \frac{1}{i}
\]
holds.
Proof 2.4. By lemma 1,
\[
\left(1 + \frac{1}{k(k + 2)}\right)^k \leq 1 + \frac{1}{k + 1}
\]

By some manipulations,
\[
\left(\frac{(k + 1)(k + 1)}{k(k + 2)}\right)^k \leq \frac{k + 2}{k + 1} \Rightarrow \left(\frac{k + 1}{k}\right)^k \leq \left(\frac{k + 2}{k + 1}\right)^k \Rightarrow \left(\frac{k + 2}{k + 1}\right)^k = \left(\frac{k + 2}{k + 1}\right)^{k+1}.
\]

Thus, we get
\[
\left(1 + \frac{1}{k}\right)^k \leq \left(1 + \frac{1}{k + 1}\right)^{k+1} < e.
\]

Now, we consider the inequality
\[
\left(1 + \frac{1}{k}\right)^k < e \Rightarrow e^{\ln\left(1 + \frac{1}{k}\right)} < e^{\frac{1}{k}} \Rightarrow \ln\left(\frac{k + 1}{k}\right) < \frac{1}{k}.
\]

Therefore,
\[
\ln\left(\frac{k + 1}{k}\right) < \frac{1}{k} \Rightarrow \frac{k + 1}{k} > e^{\frac{1}{k}} \Rightarrow \frac{k + 1}{k} > e^{\frac{1}{k}} \Rightarrow \ln\left(\frac{k + 1}{k}\right) < \frac{1}{k}.
\]

The other inequality is left as an exercise.

Remark 2.5. In fact, the inequality
\[
\sum_{i=2}^{n} \frac{1}{i} < \int_{1}^{n} \frac{1}{x} \, dx
\]

appeared as a problem in the book of Rosen. This was noted here to be able to make the following connections.

The previous lemma can be written as
\[
H_n - 1 < H_n - (\gamma + \epsilon) < H_n
\]
where γ is the Euler-Mascheroni constant, defined as

$$\gamma = \lim_{n \to +\infty} (H_n - \ln(n))$$

and ϵ can be seen as the error term. For more details about Euler-Mascheroni constant, you may look at the paper of Lagarias. From this inequality, we can have a bound for γ.

$$-\epsilon < \gamma < 1 - \epsilon$$

As $n \to +\infty$, $\epsilon \to 0$ and that will give us $0 < \gamma < 1$. In fact, $\gamma = 0.577215664901532860606512\ldots$ (see Sloane’s A001620 at OEIS.org)

3 Results and Discussion

Theorem 3.1. For positive integers k_i,

$$\sum_{i=1}^{n} \frac{1}{k_i} \leq \sum_{i=1}^{n} \frac{1}{i}$$

where for every k_i and k_j, $k_i \neq k_j$ and for all k_i and k_{i+1}, $k_i < k_{i+1}$.

Proof 3.2. It should be noted that equality holds if $k_i = i$. Now suppose that there exists $k_i \neq i$. This would mean that in the set $S = \{1, 2, 3, \ldots, n\}$, there is $k_i \notin S$. Thus, $k_i > n$. Now, we have k_i’s such that

$$\frac{1}{k_i} < \frac{1}{n} < \frac{1}{j}$$

for all $j \in S$ such that $j \neq k_i$. Adding all unit fractions $\frac{1}{j}$ for $j \neq k_i$ and $j = k_i$, we get

$$\sum_{j \neq k_i} \frac{1}{k_i} + \sum_{j = k_i} \frac{1}{k_i} \leq \sum_{j \neq k_i} \frac{1}{j} + \sum_{j = k_i} \frac{1}{j}$$

and thus,

$$\sum_{i=1}^{n} \frac{1}{k_i} \leq \sum_{i=1}^{n} \frac{1}{i}$$

Suppose that k_i’s are not just any random natural numbers but rather all $k_i | n$ and the n in the $\sum_{i=1}^{n} \frac{1}{k_i}$ will be replaced with $\tau(n)$. From this, we can rewrite the above inequality as

$$k = I(n) = \sum_{d | n} \frac{1}{d} = \sum_{d | \tau(n)} \frac{1}{d_i} \leq H_{\tau(n)}$$
Theorem 3.3 (A Lower bound of $\tau(n)$). For large n, n can be a k-perfect number if the property

$$e^{k - \gamma} < \tau(n)$$

is satisfied.

Proof 3.4. It was already established that

$$k < H_{\tau(n)} = \ln(\tau(n)) + \gamma$$

Then,

$$k - \gamma < \ln(\tau(n)) \Rightarrow e^{k - \gamma} < \tau(n)$$

Acknowledgements. The author would like to thank Jose Arnaldo Dris, for inspiring him in doing this research, Calvin Lin, for the advice in proving Lemma 1, and Solomon Olayta, for useful conversation about unit fractions and Immanuel San Diego, for the support and motivation.

References

Received: September 28, 2014; Published: June 6, 2015