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Abstract

In this paper, we study the concept of semiring of intuitionistic fuzzy
matrices(IFMs). We prove that the IFMs forms an intuitionistic fuzzy
algebra and vector space over [0,1]. Some properties of IFMs are studied
using the definition of comparability of IFMs.
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1. Introduction

Atanassov[l] generalized the notion of Zadeh’s fuzzy set to the concept of
intuitionistic fuzzy set (IFS), which is composed of membership degree, non-
membership degree and hesitation degree of an element x in a set A. Im.et.al[7]
defined the concept IFMs as a natural generalization of fuzzy matrices and
they studied the determinant of square IFMs. Khan.S.K and Pal.M[6] studied
some operations on IFMs. Jeong.N.G and Park.S.W[4] investigated the period
of powers of square [IFMs and gave some results for the equivalence IFMs and
idempotent. Lee.H.Y and Jeong.N.G[5] decomposed a transtive IFM into sum
of a nilpotent intuitionistic fuzzy matrix and a symmetic intuitionistic fuzzy
matrix. They obtained a canonical form of the transitive [IFM. In this paper,
section 2 contains the preliminaries and some backgrounds in this study. We
proved that F,, is an intuitionistic fuzzy algebra and form a vector space under
component wise addition, component wise multiplication and scalar multipli-
cation in section 3. In section 4 we proved intuitionistic fuzzy matrix multi-
plication is associative and distributive in F,,. Also, by using the definition of
comparability of IFMs some properties are proved.
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2. Preliminaries

Definition 2.1. A fuzzy matrix(FM) of order man is defined as
A = (a;j, a;j,), where a;;, is the membership value of the element a;; inA. Let
F,., denote the set of all fuzzy matrices of order man. If m = n, in short, we
write F,,, the set of all square matrices of order n.
Definition 2.2[5]. An intuitionistic fuzzy matrix (IFM)denote it by F is a
matrix of pairs A = (< a5, a;; >) of a non negative real numbers satisfying
aij +a; <1 for all 7, 5. Let F,,,, denote the set of all man intuitionistic fuzzy
matrices. If m = n, in short, we write F,,.
Definition 2.3. Let a and b be two elements of an IFM F such that,

a =< ajj, ajj >, b =< by, b;; >, then component wise addition and
multiplication is defined as

a+ b =< max{aj, by }, min{a;;, b, } >

a e b =< min{a,j, b;; }, max{aj;, bj;} >
for our convenience, we say max{a;;, b;;} = a;; + b;; and min{a;;, b;;} = a;;b;;.
Definition 2.4. Let A, B € F,,, such that A = (< a;j,a;; >) and B = (<
bij, by >), then the matrix addition is given by

A+ B = (< max{a;;, bj; }, min{aj;, bj;} >) € Frop
For A = (< a;j,a); >) € Fp and B = (< by, by; >) € Fyy, then the

matrix multiplication is given by,
AB = (< ml?x{min{aik,bkj}},mljn{max{a;k, by} >), where k =1ton,i=1
tom and j =1 to p.

p
We can write max{min{a;, by;}} = > aixbi;, and
k=1

p

min{max{ay, b;;}} = [] (a;, +b};). The product AB is defined if and only if
k=1

the number of columns of A is the same as the number of rows of B, A and B

are said to be conformable for multiplication.

Definition 2.5. The man zero intuitionistic fuzzy matrix 0 is the matrix
all of whose entries are (< 0,1 >). The nzn identity matrix I,, is defined by
(< 5@‘]‘76;']' >) such that 5@']' = 1,(5;-]- =0ifq =3 and 5ij = O,(;éj =1ifq 7é J- The
man universal matrix J is the matrix all of whose entries are (< 1,0 >).
Definition 2.6. Let A = (< ay, aj; >) € Fyyy, and ¢ € F, then the intution-
istic fuzzy scalar multiplication is defined as
cA = (< min{c, a;;}, max{l —c, a;;} >) € Fp,,,. For the universal matrix J, by
definition

cJ = (< min{c, 1}, max{l —¢,0} >) = (< ¢,1 — ¢ >).
Under component wise multiplication,

cJ e A= (< min{c, a;;}, max{l —c,a;;} >) = cA.
Definition 2.7. Let A, B € F,,, such that A = (< a;j,aj; >) and B = (<

bij, b;; >), then we write A < B if, a;; < b;; and a;; > by, for all 4, j.

IRl i
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Example 1. O < A<J

Definition 2.8. A square intuitionistic fuzzy matrix is called intuitionistic
fuzzy permutation matrix, if every row and column contains exactly one <
1,0 > and all other entries are < 0,1 > . Let P,, be the set of all man such
matrices in F,,. If A € P,,, then AAT = ATA =1,,, AT is the transpose of A.

3. Section

In this section we prove that F,, is an intuitionistic fuzzy algebra and form
a vector space under the component wise addition, component wise multipli-
cation and scalar multiplication.

Theorem 3.1. The set F,,,, is an intuitionistic fuzzy algebra under component
wise addition and multiplication operation (+, ).

Proof: Clearly, A+ O = A and AeJ = A for all A € F,,,,,. Hence the zero
matrix O is the additive identity and the universal matrix J is the multiplica-
tive identity. Thus identity element relative to the operation 4+ and e exist.
Also, A+J =J and Ae O = O. Hence universal bound exist for all A € F,,,,.
For A = (< ajj,a;; >), B = (< bij,b; >) and C' = (< ¢jj,¢); >) € Fup.

’L]7 z]

A+ (B +C) = (< aij, aj; >) + (< max{bi;, ci5}, min{bj;, c;; } >)
< max{am, bij, cij }, min{a;;, bi;, ¢j; b >) (3.1)
< max{a;, by}, min{ay;, by} >) + (< cij, ¢y >)

< max{ag;, bij, cij }, min{ay;, b, ;5 b >) (3.2)

(
= (
Also, (A+ B)+C = (
= (

from (3.1) and (3.2) A+ (B+C)=(A+B)+C
similarly, we can prove Ae (Be(') = (Ae B)e (. Hence associativity law under
+ and e is satisfied.

Further, A+ (A e B) = (< a,aj; >) + (< min{ay;, by }, max{a;;, b, } >)
= (< max{am,mm{am,bw}} min{a;;, max{a;;, b;;} } >)

= (<ag,a;>)=A

Similarly, A e (A + B) = A. Therefore, condition for absorption is satisfied.
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Assume A < B or C
Ae (B + C) = (< min{ay, max{by, c;; } }, max{a;;, min{bj;, c;; } } >)
= (< ay,a;; >) = A 33)
Also,
(Ao B)+ (AeC) = (< minfay, , by}, max{aj;, bj; } >)
+ (< min{ay, ¢;; }, max{ay;, cj; } >)
= (< max{min{a,;, b;; }, min{a;;, ¢;j } }, min{max{a;;, bj; },
max{a;;, ¢j;}} >)

= (< Qjj, &;j ) =A (34)

from (3.3) and (3.4), Ae (B+(C)=(AeB)+ (Ae()

if, A > B and C, then we have two cases A>B>Cor A>C>B

for, A> B> C from (3.3) and (3.4) Ae (B+C)=B=(AeB)+ (Ae()
A>C > Bfrom (3.3) and (3.4) Ae (B+C)=C=(AeB)+(Ae()

Therefore, Ae (B+C)=(AeB)+ (Ae()

Similarly, we can prove Ae (B + () = (AeB)+ (Ae (). Thus the property

of distributivity holds. Hence, F,,, is an intuitionistic fuzzy algebra under the

operation + and e. O

Remark 3.1 F,,,, is a commutative semiring with identity O and J. O

Theorem 3.2. The set F,,,, is an intuitionistic fuzzy vector space under the
operations IFM addition and scalar multiplication.

Proof: For A, B,C € F,,

Clearly, A+ B = B+ A and A+ (B+C) = (A+ B)+C. Therefore commutative
law and associative law holds in F,,,. Also, for all A € F,,,, there exist an
element O € F,,, such that A+ O = A.

Again, for c € F
c(A+B)=cJe(A+ B) by definition 2.6
=cJeA+cJeB by theorem 3.1
=cA+cB.
For ¢1,c0 € F
(1 +c)A=(c1+cy)Je A
= (C1J + CQJ) o A
=ciJoeA+cyJe A
= A+ A

hence, F,,, is an intuitionistic vector space over F. O
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4. Section

In this section we prove matrix multiplication is associative and distributive
in F,,.
Theorem 4.1. For any three IFMs A, B, C' of order mxn, nxp, prq respec-
tively (AB)C = A(BC).
Proof: Both (AB)C and A(BC) are defined and are of type mxzq. Let A =
(< aij,a;; >), B = (< bjg, by, >) and C' = (< ¢y, ¢, >) such that the ranges
of the suffixes 7,7,k and [ are 1 to m , 1 to n,1 to p and 1 to ¢ respectively.
Now (i, k)" element of the product

AB =<y a;;bjk, H (aj; + ;) > . The (i,1)" element in the product
J=1 J=1

(AB)C is the sum of products of the corresponding elements in the i row of

AB,1th column of C with k common. Thus, (i, 1) element of

(AB)C <z<2au badews T1(TT (@, + by) + ) >

=1 j=1 k=1 ] 1
P n
Z Z bjkCrl, k]_[l Hl(a + by, + ¢y) > (4.1)
k=1j=1 j
p
Now, (4, 1) element of the product BC =< Z biker, [T (b, +ciy) >

k=1 k=1

Again the (i, 1) element of the product A(BC) is the sum of products of
the corresponding elements in the i row of A and 1" column of BC.(i, 1)
element of

A(BC) =< Zi: az-j(i bjkcr), ﬁ[(% + ﬁ (b}-k + ) >

p n
=< > > aiibjrcu, H H(% + b+ ¢y) > (4.2)

k:]: kl—l

Hence from (4.1) and (4.2)(AB)C = A(BC). O

Theorem 4.2. For any three matrices A, B and C' of order man, nxp and nxp
in F
A(B+C)=AB+ AC.
Proof: Let A = (< ay,a;; >), B = (< bjy, by, >) and C' = (< ¢y, ¢y, >) such
that the ranges of suffixes 7,7,k are i = 1 tom,j = 1ton and k =1 to p
respectively. Now (j, k)™ element of
B+ C = (< max{bj, cjx }, min{bjy, c;. } >)

= (< bjk + Cjk, b}kc}k >)
(i, k)" element in the product of A and (B + (), that is of A(B + C) is the
sum of the products of the corresponding elements in the i"* row A and k"
column of B + C’ .
AB+C) = (< Z aij (bj + ¢jn), T1 (a; + bjcyy) >) (4.3)

Jj=1 Jj=1
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Now, (i, k)" element of (AB + AC) is

AB+ AC = (< Zaijbjk, H(a;j +by,) >) + (< Zajkc]k > H (aj; + Ci) >)
j=1 j=1 j=1 j=1

= (< Z(&” ik QiiCik ,H a;; + by, H a;; +cy) >)
J=1 J

J=1 =1

3

j=1 ]=1

From (4.3) and (4.4) A(B+ C) = AB + AC.

Theorem 4.3. Let A,B€F,,,, then A< Biff A+ B=B.
Proof: If A < B, then A + B = (< max{a,j, bj; }, min{a;;, b;;} >)

= (< b;j,b;; >) = B by defini-

ijs i
tion 2.7.

Conversely, if A+ B = B, then a;; < b;; and a;; > b;; this implies A< B.

O

Theorem 4.4. Let A,B € F,,,, if A < B then for any C' € F,,, AC < BC
and for any D € F),,,, DA < DB.

Proof. If A < B, then a;;, < by, and a, > b}, for i = 1tom and £k =1 to
n. By fuzzy multiplication AigCrj < blkckj and @;kckj > b;kc}q forj =1 to p.
Again by fuzzy addition Z QipCrj < Z bikcr; and Z Wi Chj = Z bj1.Cyj- Thus

k=1
AC < BC. Similarly we can prove DA < DA. O
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