On Semiring of Intuitionstic Fuzzy Matrices

S. Sriram and P. Murugadas

Mathematics Section, FEAT
Annamalai University
Annamalainagar - 608 002, India
ssm_3096@yahoo.co.in
bodi_muruga@yahoo.com

Abstract

In this paper, we study the concept of semiring of intuitionistic fuzzy matrices (IFMs). We prove that the IFMs forms an intuitionistic fuzzy algebra and vector space over [0,1]. Some properties of IFMs are studied using the definition of comparability of IFMs.

Mathematics Subject Classification: Primary 05A15; Secondary 65F25

Keywords: Intuitionistic fuzzy matrix(IFM)

1. Introduction

Atanassov [1] generalized the notion of Zadeh's fuzzy set to the concept of intuitionistic fuzzy set (IFS), which is composed of membership degree, nonmembership degree and hesitation degree of an element x in a set A. Im.et.al [7] defined the concept IFMs as a natural generalization of fuzzy matrices and they studied the determinant of square IFMs. Khan.S.K and Pal.M[6] studied some operations on IFMs. Jeong.N.G and Park.S.W[4] investigated the period of powers of square IFMs and gave some results for the equivalence IFMs and idempotent. Lee.H.Y and Jeong.N.G[5] decomposed a transtive IFM into sum of a nilpotent intuitionistic fuzzy matrix and a symmetric intuitionistic fuzzy matrix. They obtained a canonical form of the transitive IFM. In this paper, section 2 contains the preliminaries and some backgrounds in this study. We proved that F_n is an intuitionistic fuzzy algebra and form a vector space under component wise addition, component wise multiplication and scalar multiplication in section 3. In section 4 we proved intuitionistic fuzzy matrix multiplication is associative and distributive in F_n . Also, by using the definition of comparability of IFMs some properties are proved.

2. Preliminaries

Definition 2.1. A fuzzy matrix (FM) of order mxn is defined as

 $A = (a_{ij}, a_{ij\mu})$, where $a_{ij\mu}$ is the membership value of the element a_{ij} in A. Let F_{mn} denote the set of all fuzzy matrices of order mxn. If m = n, in short, we write F_n , the set of all square matrices of order n.

Definition 2.2[5]. An intuitionistic fuzzy matrix (IFM)denote it by F is a matrix of pairs $A = (\langle a_{ij}, a'_{ij} \rangle)$ of a non negative real numbers satisfying $a_{ij} + a'_{ij} \leq 1$ for all i, j. Let F_{mn} denote the set of all mxn intuitionistic fuzzy matrices. If m = n, in short, we write F_n .

Definition 2.3. Let a and b be two elements of an IFM F such that,

 $a = \langle a_{ij}, a_{ij} \rangle$, $b = \langle b_{ij}, b_{ij}^{*} \rangle$, then component wise addition and multiplication is defined as

$$a + b = < \max\{a_{ij}, b_{ij}\}, \min\{a'_{ij}, b'_{ij}\} >$$

 $a \bullet b = < \min\{a_{ij}, b_{ij}\}, \max\{a'_{ij}, b'_{ij}\} >$

for our convenience, we say $\max\{a_{ij},b_{ij}\}=a_{ij}+b_{ij}$ and $\min\{a_{ij},b_{ij}\}=a_{ij}b_{ij}$.

Definition 2.4. Let $A, B \in \mathcal{F}_{mn}$ such that $A = (\langle a_{ij}, a_{ij}' \rangle)$ and $B = (\langle b_{ij}, b_{ij}' \rangle)$, then the matrix addition is given by

$$A + B = (\langle \max\{a_{ij}, b_{ij}\}, \min\{a'_{ij}, b'_{ij}\} \rangle) \in \mathcal{F}_{mn}$$

For $A = (\langle a_{ij}, a_{ij}' \rangle) \in \mathcal{F}_{mn}$ and $B = (\langle b_{ij}, b_{ij}' \rangle) \in \mathcal{F}_{np}$, then the matrix multiplication is given by,

 $AB = (\langle \max_{k} \{\min\{a_{ik}, b_{kj}\}\}, \min_{k} \{\max\{a_{ik}', b_{kj}'\}\} \rangle), \text{ where } k = 1 \text{ to } n, i = 1 \text{ to } m \text{ and } j = 1 \text{ to } p.$

We can write
$$\max\{\min\{a_{ik},b_{kj}\}\}=\sum_{k=1}^p a_{ik}b_{kj}$$
, and

 $\min\{\max\{a_{ik}',b_{kj}'\}\}=\prod_{k=1}^p(a_{ik}'+b_{kj}')$. The product AB is defined if and only if the number of columns of A is the same as the number of rows of B, A and B are said to be conformable for multiplication.

Definition 2.5. The mxn zero intuitionistic fuzzy matrix $\mathbf{0}$ is the matrix all of whose entries are (<0,1>). The nxn identity matrix \mathbf{I}_n is defined by $(<\delta_{ij},\delta_{ij}^,>)$ such that $\delta_{ij}=1,\delta_{ij}^,=0$ if i=j and $\delta_{ij}=0,\delta_{ij}^,=1$ if $i\neq j$. The mxn universal matrix \mathbf{J} is the matrix all of whose entries are (<1,0>).

Definition 2.6. Let $A = (\langle a_{ij}, a'_{ij} \rangle) \in \mathcal{F}_{mn}$ and $c \in F$, then the intutionistic fuzzy scalar multiplication is defined as

 $cA = (\langle \min\{c, a_{ij}\}, \max\{1-c, a_{ij}'\} \rangle) \in \mathcal{F}_{mn}$. For the universal matrix **J**, by definition

$$c\mathbf{J} = (\langle \min\{c, 1\}, \max\{1 - c, 0\} \rangle) = (\langle c, 1 - c \rangle).$$

Under component wise multiplication,

$$cJ \bullet A = (\langle \min\{c, a_{ij}\}, \max\{1 - c, a_{ij}\} \rangle) = cA.$$

Definition 2.7. Let $A, B \in \mathcal{F}_{mn}$ such that $A = (\langle a_{ij}, a_{ij}^{\circ} \rangle)$ and $B = (\langle b_{ij}, b_{ij}^{\circ} \rangle)$, then we write $A \leq B$ if, $a_{ij} \leq b_{ij}$ and $a_{ij}^{\circ} \geq b_{ij}^{\circ}$ for all i, j.

Example 1. $O \le A \le J$

Definition 2.8. A square intuitionistic fuzzy matrix is called intuitionistic fuzzy permutation matrix, if every row and column contains exactly one < 1, 0 > and all other entries are < 0, 1 >. Let \mathbf{P}_n be the set of all mxn such matrices in \mathbf{F}_n . If $A \in \mathbf{P}_n$, then $AA^T = A^TA = \mathbf{I}_n$, A^T is the transpose of A.

3. Section

In this section we prove that F_n is an intuitionistic fuzzy algebra and form a vector space under the component wise addition, component wise multiplication and scalar multiplication.

Theorem 3.1. The set F_{mn} is an intuitionistic fuzzy algebra under component wise addition and multiplication operation $(+, \bullet)$.

Proof: Clearly, $A + \mathbf{O} = A$ and $A \bullet \mathbf{J} = A$ for all $A \in \mathcal{F}_{mn}$. Hence the zero matrix \mathbf{O} is the additive identity and the universal matrix \mathbf{J} is the multiplicative identity. Thus identity element relative to the operation + and \bullet exist. Also, $A + \mathbf{J} = \mathbf{J}$ and $A \bullet \mathbf{O} = \mathbf{O}$. Hence universal bound exist for all $A \in \mathcal{F}_{mn}$. For $A = (\langle a_{ij}, a'_{ij} \rangle), B = (\langle b_{ij}, b'_{ij} \rangle)$ and $C = (\langle c_{ij}, c'_{ij} \rangle) \in \mathcal{F}_{mn}$.

$$A + (B + C) = (\langle a_{ij}, a_{ij}' \rangle) + (\langle \max\{b_{ij}, c_{ij}\}, \min\{b_{ij}', c_{ij}'\} \rangle)$$

$$= (\langle \max\{a_{ij}, b_{ij}, c_{ij}\}, \min\{a_{ij}', b_{ij}', c_{ij}'\} \rangle)$$

$$Also, (A + B) + C = (\langle \max\{a_{ij}, b_{ij}\}, \min\{a_{ij}', b_{ij}'\} \rangle) + (\langle c_{ij}, c_{ij}' \rangle)$$

$$= (\langle \max\{a_{ij}, b_{ij}, c_{ij}\}, \min\{a_{ij}', b_{ij}', c_{ij}'\} \rangle)$$

$$(3.2)$$

from (3.1) and (3.2) A + (B + C) = (A + B) + Csimilarly, we can prove $A \bullet (B \bullet C) = (A \bullet B) \bullet C$. Hence associativity law under + and \bullet is satisfied.

Further,
$$A + (A \bullet B) = (\langle a_{ij}, a'_{ij} \rangle) + (\langle \min\{a_{ij}, b_{ij}\}, \max\{a'_{ij}, b'_{ij}\} \rangle)$$

$$= (\langle \max\{a_{ij}, \min\{a_{ij}, b_{ij}\}\}, \min\{a'_{ij}, \max\{a'_{ij}, b'_{ij}\}\} \rangle)$$

$$= (\langle a_{ij}, a'_{ij} \rangle) = A$$

Similarly, $A \bullet (A + B) = A$. Therefore, condition for absorption is satisfied.

(3.4)

Assume $A \leq B$ or C

$$A \bullet (B + C) = (< \min\{a_{ij}, \max\{b_{ij}, c_{ij}\}\}, \max\{a'_{ij}, \min\{b'_{ij}, c'_{ij}\}\} >)$$

$$= (< a_{ij}, a'_{ij} >) = A$$

$$Also,$$

$$(A \bullet B) + (A \bullet C) = (< \min\{a_{ij}, b_{ij}\}, \max\{a'_{ij}, b'_{ij}\} >)$$

$$+ (< \min\{a_{ij}, c_{ij}\}, \max\{a'_{ij}, c'_{ij}\} >)$$

$$= (< \max\{\min\{a_{ij}, b_{ij}\}, \min\{a_{ij}, c_{ij}\}\}, \min\{\max\{a'_{ij}, b'_{ij}\}, \max\{a'_{ij}, c'_{ij}\}\} >)$$

$$= (< \max\{\min\{a_{ij}, b_{ij}\}, \min\{a_{ij}, c_{ij}\}\}, \min\{\max\{a'_{ij}, b'_{ij}\}, \max\{a'_{ij}, c'_{ij}\}\} >)$$

from (3.3) and (3.4), $A \bullet (B+C) = (A \bullet B) + (A \bullet C)$ if, $A \geq B$ and C, then we have two cases $A \geq B \geq C$ or $A \geq C \geq B$ for, $A \geq B \geq C$ from (3.3) and (3.4) $A \bullet (B+C) = B = (A \bullet B) + (A \bullet C)$ $A \geq C \geq B$ from (3.3) and (3.4) $A \bullet (B+C) = C = (A \bullet B) + (A \bullet C)$ Therefore, $A \bullet (B+C) = (A \bullet B) + (A \bullet C)$ Similarly, we can prove $A \bullet (B+C) = (A \bullet B) + (A \bullet C)$. Thus the property of distributivity holds. Hence, F_{mn} is an intuitionistic fuzzy algebra under the

 $= (\langle a_{ij}, a_{ij}, \rangle) = A$

Remark 3.1 F_{mn} is a commutative semiring with identity **O** and **J**.

Theorem 3.2. The set F_{mn} is an intuitionistic fuzzy vector space under the operations IFM addition and scalar multiplication.

Proof: For $A, B, C \in \mathbb{F}_{mn}$

operation + and \bullet .

Clearly, A+B=B+A and A+(B+C)=(A+B)+C. Therefore commutative law and associative law holds in F_{mn} . Also, for all $A \in F_{mn}$, there exist an element $\mathbf{O} \in F_{mn}$ such that $A+\mathbf{O} = \mathbf{A}$.

Again, for
$$c \in \mathbf{F}$$

 $c(A+B) = c\mathbf{J} \bullet (A+B)$ by definition 2.6
 $= c\mathbf{J} \bullet A + c\mathbf{J} \bullet B$ by theorem 3.1
 $= cA + cB$.
For $c_1, c_2 \in \mathbf{F}$
 $(c_1 + c_2)A = (c_1 + c_2)\mathbf{J} \bullet A$
 $= (c_1\mathbf{J} + c_2\mathbf{J}) \bullet A$
 $= c_1\mathbf{J} \bullet \mathbf{A} + \mathbf{c_2}\mathbf{J} \bullet \mathbf{A}$
 $= c_1A + c_2A$

hence, F_{mn} is an intuitionistic vector space over \mathbf{F} .

4. Section

In this section we prove matrix multiplication is associative and distributive in F_n .

Theorem 4.1. For any three IFMs A, B, C of order mxn, nxp, pxq respectively (AB)C = A(BC).

Proof: Both (AB)C and A(BC) are defined and are of type mxq. Let $A = (\langle a_{ij}, a'_{ij} \rangle)$, $B = (\langle b_{jk}, b'_{jk} \rangle)$ and $C = (\langle c_{kl}, c'_{kl} \rangle)$ such that the ranges of the suffixes i, j, k and l are 1 to m, 1 to n,1 to p and 1 to q respectively. Now $(i, k)^{th}$ element of the product

$$AB = \langle \sum_{j=1}^n a_{ij}b_{jk}, \prod_{j=1}^n (a_{ij}^{,} + b_{jk}^{,}) \rangle$$
. The $(i,1)^{th}$ element in the product

(AB)C is the sum of products of the corresponding elements in the i^{th} row of $AB, 1^{th}$ column of C with k common. Thus, $(i, 1)^{th}$ element of

$$(AB)C = \langle \sum_{k=1}^{p} (\sum_{j=1}^{n} a_{ij}b_{jk})c_{kl}, \prod_{k=1}^{p} (\prod_{j=1}^{n} (a_{ij}^{,} + b_{jk}^{,}) + c_{kl}^{,}) \rangle$$

$$= \langle \sum_{k=1}^{p} \sum_{j=1}^{n} a_{ij}b_{jk}c_{kl}, \prod_{k=1}^{p} \prod_{j=1}^{n} (a_{ij}^{,} + b_{jk}^{,} + c_{kl}^{,}) \rangle$$

$$(4.1)$$

Now, $(j,1)^{th}$ element of the product $BC = <\sum_{k=1}^{p} b_{jk} c_{kl}, \prod_{k=1}^{p} (b_{jk}^{i} + c_{kl}^{i}) > .$

Again the $(i,1)^{th}$ element of the product A(BC) is the sum of products of the corresponding elements in the i^{th} row of A and 1^{th} column of $BC.(i,l)^{th}$ element of

$$A(BC) = \langle \sum_{j=1}^{n} a_{ij} (\sum_{k=1}^{p} b_{jk} c_{kl}), \prod_{j=1}^{n} (a'_{ij} + \prod_{k=1}^{p} (b'_{jk} + c'_{kl})) \rangle$$

$$= \langle \sum_{k=1}^{p} \sum_{j=1}^{n} a_{ij} b_{jk} c_{kl}, \prod_{k=1}^{p} \prod_{j=1}^{n} (a'_{ij} + b'_{jk} + c'_{kl}) \rangle$$
Hence from (4.1) and (4.2)(AB)C = A(BC).
$$(4.2)$$

Theorem 4.2. For any three matrices A, B and C of order mxn, nxp and nxp

$$A(B+C) = AB + AC.$$

in F

Proof: Let $A = (\langle a_{ij}, a'_{ij} \rangle)$, $B = (\langle b_{jk}, b'_{jk} \rangle)$ and $C = (\langle c_{jk}, c'_{jk} \rangle)$ such that the ranges of suffixes i, j, k are i = 1 to m, j = 1 to n and k = 1 to p respectively. Now $(j, k)^{th}$ element of

$$B + C = (\langle \max\{b_{jk}, c_{jk}\}, \min\{b_{jk}, c_{jk}\} \rangle)$$

= $(\langle b_{jk} + c_{jk}, b_{jk}, c_{jk} \rangle)$

 $(i,k)^{th}$ element in the product of A and (B+C), that is of A(B+C) is the sum of the products of the corresponding elements in the i^{th} row A and k^{th} column of B+C

$$A(B+C) = \left(\left\langle \sum_{j=1}^{n} a_{ij} (b_{jk} + c_{jk}), \prod_{j=1}^{n} (a'_{ij} + b'_{jk} c'_{jk}) \right\rangle \right)$$
(4.3)

Now, $(i, k)^{th}$ element of (AB + AC) is

$$AB + AC = \left(\left\langle \sum_{j=1}^{n} a_{ij} b_{jk}, \prod_{j=1}^{n} (a'_{ij} + b'_{jk}) \right\rangle \right) + \left(\left\langle \sum_{j=1}^{n} a_{jk} c_{jk} \right\rangle, \prod_{j=1}^{n} (a'_{ij} + c'_{jk}) \right\rangle \right)$$

$$= \left(\left\langle \sum_{j=1}^{n} (a_{ij} b_{jk} + a_{ij} c_{jk}), \prod_{j=1}^{n} (a'_{ij} + b'_{jk}) \prod_{j=1}^{n} (a'_{ij} + c'_{jk}) \right\rangle \right)$$

$$= \left(\left\langle \sum_{j=1}^{n} a_{ij} (b_{jk} + c_{jk}), \prod_{j=1}^{n} (a'_{ij} + b'_{jk} c'_{jk}) \right\rangle \right)$$

$$(4.4)$$

From (4.3) and (4.4) A(B+C) = AB + AC.

Theorem 4.3. Let $A, B \in \mathcal{F}_{mn}$, then $A \leq B$ iff A + B = B. **Proof:** If $A \leq B$, then $A + B = (< \max\{a_{ij}, b_{ij}\}, \min\{a_{ij}^{i}, b_{ij}^{i}\} >)$

= $(\langle b_{ij}, b'_{ij} \rangle) = B$ by defini-

tion 2.7.

Conversely, if A + B = B, then $a_{ij} \leq b_{ij}$ and $a'_{ij} \geq b'_{ij}$ this implies $A \leq B$.

Theorem 4.4. Let $A, B \in \mathcal{F}_{mn}$ if $A \leq B$ then for any $C \in \mathcal{F}_{np}, AC \leq BC$ and for any $D \in \mathcal{F}_{pm}, DA \leq DB$.

Proof. If $A \leq B$, then $a_{ik} \leq b_{ik}$ and $a'_{ik} \geq b'_{ik}$ for i = 1 to m and k = 1 to n. By fuzzy multiplication $a_{ik}c_{kj} \leq b_{ik}c_{kj}$ and $a'_{ik}c_{kj} \geq b'_{ik}c'_{kj}$ for j = 1 to p. Again by fuzzy addition $\sum_{k=1}^{n} a_{ik}c_{kj} \leq \sum_{k=1}^{n} b_{ik}c_{kj}$ and $\sum_{k=1}^{n} a'_{ik}c'_{kj} \geq \sum_{k=1}^{n} b'_{ik}c'_{kj}$. Thus $AC \leq BC$. Similarly we can prove $DA \leq DA$.

REFERENCES

- [1] K. Atanassov, *Intuitionistic Fuzzy Sets*, Theory and Application, Physicaverlag, 1999.
- [2] K. Atanassov, *Intuitionistic Fuzzy Sets*, Fuzzy Sets and Systems, **20**(1986), 87-96.
- [3] M. Bhowmik and M. Pal, Generalized Intuitionistic Fuzzy Matrices, Far East Journal of Mathematical Sciences, 29(3)(2008), 533-554.
- [4] N. G. Jeong and S. W. Park, The Equivalence Intuitionistic Fuzzy Matrix,

For East Journal of Mathematical Sciences, 11(3) (2003), 355-365.

- [5] Lee. Hang. Youl and N. G. Jeong, Canonical Form of Transitive Intuitionistic Fuzzy Matrices, Honam Mathematical Journal, 27(4) (2005), 543-550.
- [6] S. K. Khan and M. Pal, Some Operation on Intuitionistic Fuzzy Matrices, Acta Ciencia Indica, XXXII M, 2006, 515-524.
- [7] Young Bim Im, The Determinant of Square Intuitionistic Fuzzy Matix, Far East Journal of Mathematical Sciences, **3(5)**(2001), 789-796.
- [8] L. A. Zadeh, Fuzzy Sets, Information and Control, 8(1965), 338-353.

Received: November, 2009